


Example code sharing of CountDownLatch for multi-thread synchronization in Java
This article mainly introduces the detailed explanation and example code of CountDownLatch in Java for multi-thread synchronization. Friends in need can refer to the following
Detailed explanation of multi-thread synchronization by CountDownLatch in Java
Introduction to CountDownLatch
In the previous Java study notes, several methods for multi-thread synchronization in Java are summarized:
1, synchronized keywords for synchronization.
2. Lock lockInterfaceand its implementation classesReentrantLock, ReadWriteLock locks realize synchronization.
3. Semaphore achieves synchronization.
Among them, the synchronized keyword and Lock lock solve the problem of concurrent access to the same resource by multiple threads. Semaphore solves the problem of shared access to multiple copies of resources.
Today, let’s learn about another multi-thread synchronization auxiliary class in Java: CountDownLatch. The official documentation explains CountDownLatch as: It allows one or more threads to wait until a set of operations being performed in other threads is completed. In other words, CountDownLatch controls one or more threads and lets them wait for multiple threads to complete a certain task before starting. CountDownLatch is mainly used to synchronize the execution of multiple tasks. It is different from other synchronized keywords, locks, and semaphores, which are used to synchronize shared resources.
Introduction to the implementation principle of CountDownLatch:
CountDownLatch maintains a counter internally. The value of the counter is the number of tasks to be completed N. You need to wait for these N A thread that has completed a task calls the await() method of
CountDownLatch to put itself into a dormant waiting state.
When a task thread completes a task, it calls the countDown() method of CountDownLatch to indicate that its task has been completed. At this time, the counter value of CountDownLatch is reduced by 1. When all tasks are completed, The counter value is 0. When the counter value is 0, CountDownLatch will wake up all threads that went to sleep due to the await() method.
Usage of CountDownLatch:
There are three main points in the use of CountDownLatch:
1. Statement of CountDownLatch And initialization, you need to specify the number of tasks waiting to be completed during initialization.
2. When a certain task is completed, call the countDown() method of CountDownLatch to report to CountDownLatch that its task has been completed.
3. The thread that needs to wait for the task to be completed Call the await() method of CountDownLatch. After the call, the thread will go to sleep. When the counter value of CountDownLatch reaches 0 after all tasks are completed, the thread sleeping due to the await() method will be awakened.
Here I have made some improvements based on the CountDownLatch usage example in the Java 7 Concurrent Programming Practical Manual to demonstrate the usage details of CountDownLatch:
Simulate a meeting with 10 participants and a moderator. Each participant and moderator need to wait for other participants to sign in before they can start the meeting and speak. To do this, first create a class VideoConference that will be managed, which provides an arrive() method for participants to call to check in. The owner of the conference management is the host, who waits for each participant to sign in:
public class VideoConference implements Runnable{ private final CountDownLatch countDownLatch; private int number; public VideoConference(int number) { this.number = number; this.countDownLatch = new CountDownLatch(number);//使用Number初始化其内部的计数器,当初始化完成后,不能再次初始化 } public void arrive(String name){ //每个需要同步的任务,在任务完成时,需要调用该方法 countDownLatch.countDown();//countDownLatch内部的计数器减1 System.out.print("arrive:"+name+"\n"); try{ countDownLatch.await();//await方法是线程进入休眠,当countDownLatch计数器为0时,将被唤醒 //线程被唤醒,在这里可以执行一系列任务 System.out.print("name:"+name + " say:let's start..." +"\n"); }catch (InterruptedException e){ e.printStackTrace(); } } public void run(){ System.out.print("has arrive:"+(number-countDownLatch.getCount())+"\n"); try{ countDownLatch.await();//await方法是线程进入休眠,当countDownLatch计数器为0时,将被唤醒 //线程被唤醒,在这里可以执行一系列任务 System.out.print("all arrived:"+(number-countDownLatch.getCount())+"\n"); }catch (InterruptedException e){ e.printStackTrace(); } } }
Create a participant class Participant:
public class Participant implements Runnable{ private VideoConference videoConference; private String name; public Participant(String name, VideoConference videoConference) { this.name = name; this.videoConference = videoConference; } public void run(){ try { //do something Thread.sleep(50); // videoConference.arrive(name); }catch (InterruptedException e){ e.printStackTrace(); } } public static void main(String[] args){ VideoConference videoConference = new VideoConference(10); Thread videoThread = new Thread(videoConference); videoThread.start(); for(int i=0; i<10; i++){ Thread thread = new Thread(new Participant("participant:"+i,videoConference)); thread.start(); } } }
The main function in the Participant class First create a meeting that requires 10 participants to participate. Then, create 10 participants and sign in one by one. After all 10 participants sign in, each participant and host will Be "awakened" and speak.
Summary:
The CountDownLatch class solves the problem of synchronization waiting and task coordination between multiple threads. It can be used when starting a program. Before the main function, multiple subtasks such as configuration environment check, network check, etc. need to be completed in advance and similar scenarios. In Java, in addition to using CountDownLatch to achieve synchronous waiting between multiple threads, you can also use barrier technology CyclicBarrier to achieve synchronous waiting and task coordination between multiple threads.
The above is the detailed content of Example code sharing of CountDownLatch for multi-thread synchronization in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.
