For JavaScript types, it can be simply summarized as: compared to strongly typed languages, it is a weak (loose) typed language; there are basic types and reference types, and the difference between them is that there is a fixed space in the stack memory. , an unfixed space is saved in heap memory and a pointer to the implementation location is saved in stack memory.
Many books on the market have a lot of space to talk about it. This article will cover several aspects that may require you to have some basic understanding of JavaScript, especially JavaScript types. If you still don’t understand it, you can pick up a book about JavaScript and read it before reading this article.
1. Basic types and reference types
1. Basic types: Undefined/Null/Boolean/Number/String
2. Reference types: Object/Array/Function/Date/RegExp/Error/Map/Set…
Why haven’t the reference types been enumerated? Because it’s enough for you to know this much, at least for this article I’m talking about. Others may be rarely used, and even things like Map and Set are not supported by all browsers.
2. Judgment of JavaScript type
There are two operators in JavaScript that can be used to determine types. They are typeof and instanceof, but the circle is very small, they don't mix well, and they are notoriously unreliable. It is correct in a few cases, but unreliable in many cases. Just take a look and you’ll know:
// When unreliable:
typeof [] // object
typeof null // object
'sofish' instanceof String // false
Hmm~ Maybe many beginner JavaScript programmers will curse because of this. Most people already have libraries such as jQuery when they need to use JS. They have encapsulated them so that you can easily detect types. Of course, in fact, it is not troublesome to detect, because the saying "In JavaScript, everything is an object", of course, as mentioned in many documents, undefined is actually just a global property like NaN and Infinity. You probably know that. But "object" can help us:
In this case, we can use the is function to help us determine the type, and this simple function has good compatibility and can be used in your project. For example:
3. JavaScript type conversion
In JavaScript, the type of variables (properties) can be changed. The most common one seen is the conversion between String and Number. How to turn 1 '2' into 12? It is necessary to understand the operator, which is a mathematical operator and a string hyphen in JavaScript. Therefore, novices will often see an interesting phenomenon. When using the sign, sometimes the calculation is not what they want, but using the - sign can always get the "correct" answer.
err = 'sofish';
console.log(err); // 'sofish'
1. Add properties and methods
We will see in the following code that if we assign a basically similar value, it will not report an error, but it will be invalid when getting it:
var str = 'sofish';
str.hello = 'world';
console.log(str.hello); // undefined
2. Operations on reference type values
Since the reference type is stored in the stack memory as a reference, when we point to the same original value, the operation on the value will affect all references; here is an example of reassignment (not the operation of the value) Direct manipulation) will recreate an object without changing the original value. For example:
// Non-identical type
sofish = ['not a fish']; // When sofish is changed similarly, the original value will not be changed
console.log(arr); // [1, 2 , 3, 'hello world']
3. Copying reference type values
Operations on the original value will affect all references, which is not necessarily what we want. Sometimes we need to copy a brand new object without affecting other references during the operation. In general, there are few specific operations like Date/Function/RegExp..., mainly operations such as adding items and properties to Array and Object. So the main thing we need to understand is how to copy Array and Object objects.
3.1 Copying arrays
In the Array object, there is a slice method that returns an intercepted array. In ES5, filter and so on also return a new array, so we may use this method to copy.
// Operating on the new array will not affect the original array
sofish.push('hello world');
console.log(arr); // [1, 2, 3]
We use the slice method to copy Array. In fact, for both Array and Object, we can use the for ... in loop to traverse and assign values to copy.
//Operations on new objects will not affect the original value
sofish.say = function() {};
console.log(obj); // { name: 'sofish' }
3.3 Shadow / Deep Copy
Operations like the above are what we often call shallow copy (Shadow Copy). However, both Array and Object can have multiple layers (dimensions). A copy like this only considers the value of the top layer. Among the possible values, Array and Object still point to the original object. For example:
// Operations on the object `cat` contained in `sofish` will affect the original value
sofish[1].bio = 'hackable';
console.log(arr);// [1 , cat: { bio: 'hackable' } ]
// The shallow copy operation on the first layer does not affect the original value, but affects the second layer
sofish.push('cat');
console.log(arr); // [1, {bio: 'not a fish'}]
sofish[1].bio = 'hello world';
console.log(arr) // [1, {bio: 'hello world'}]
// Deep copy will not affect the original value
sofish = copy(arr, 1);
sofish[1].bio = 'foo or bar';
console.log(arr) ; // [1, {bio: 'hello world'}]
That’s it. You should basically understand all the difficult points about types that you need to understand. Of course, copying is the most troublesome point. In addition to Array and Object that often need to be operated, there is also copying of Date/Function/RegExp.