Home > Web Front-end > JS Tutorial > body text

JavaScript implements pre-order, in-order and post-order traversal methods of binary trees

小云云
Release: 2018-01-02 13:17:59
Original
2076 people have browsed it

This article mainly introduces the JavaScript implementation of pre-order, in-order and post-order traversal methods of binary trees. It summarizes and analyzes the implementation methods of pre-order, in-order and post-order traversal of binary trees in JavaScript and related operation precautions in the form of examples. What is needed Friends can refer to it, I hope it can help everyone.

The example of this article describes the JavaScript implementation of pre-order, in-order and post-order traversal methods of binary trees. I share it with you for your reference. The details are as follows:

When I was learning data structure before, I learned the pre-order, in-order and post-order traversal methods of binary trees and implemented them in C language. The following is implemented in js Three types of traversal of binary trees, and the traversal process is shown in the form of animation.

The entire traversal process still uses recursive thinking. The principle is very crude and simple.

Function of pre-order traversal:


function preOrder(node){
  if(!(node==null)){
    pList.push(node);
    preOrder(node.firstElementChild);
    preOrder(node.lastElementChild);
  }
}
Copy after login

中Function of in-order traversal:


function inOrder(node) {
  if (!(node == null)) {
    inOrder(node.firstElementChild);
    pList.push(node);
    inOrder(node.lastElementChild);
  }
}
Copy after login

Function of post-order traversal:


function postOrder(node) {
  if (!(node == null)) {
    postOrder(node.firstElementChild);
    postOrder(node.lastElementChild);
    pList.push(node);
  }
}
Copy after login

Color change function:


function changeColor(){
  var i=0;
  pList[i].style.backgroundColor = 'blue';
  timer=setInterval(function(argument){
    i++;
    if(i<pList.length){
      pList[i-1].style.backgroundColor="#fff";
      pList[i].style.backgroundColor="blue";
    }
    else{
      pList[pList.length-1].style.backgroundColor="#fff";
    }
  },500)
}
Copy after login

The core code is as above. I originally wanted to write depth-first traversal and breadth-first traversal. Later it was discovered that depth-first traversal of a binary tree is the same as pre-order traversal. I will summarize the BFS and DFS of trees another day.

The entire code is as follows:


<!DOCTYPE html>
<html>
<head lang="en">
  <meta charset="UTF-8">
  <title></title>
  <style>
    .root{
      display: flex;
      padding: 20px;
      width: 1000px;
      height: 300px;border: 1px solid #000000;
      margin: 100px auto;
      margin-bottom: 10px;
      justify-content: space-between;
    }
    .child_1{
      display: flex;
      padding: 20px;
      width: 450px;
      height: 260px;border: 1px solid red;
      justify-content: space-between;
    }
    .child_2{
      display: flex;
      padding: 20px;
      width: 170px;
      height: 220px;border: 1px solid green;
      justify-content: space-between;
    }
    .child_3{
      display: flex;
      padding: 20px;
      width: 35px;
      height: 180px;border: 1px solid blue;
      justify-content: space-between;
    }
    input{
      margin-left: 100px;
      width: 60px;
      height: 40px;
      font:20px italic;
    }
  </style>
</head>
<body>
<p class="root">
  <p class="child_1">
    <p class="child_2">
      <p class="child_3"></p>
      <p class="child_3"></p>
    </p>
    <p class="child_2">
      <p class="child_3"></p>
      <p class="child_3"></p>
    </p>
  </p>
  <p class="child_1">
    <p class="child_2">
      <p class="child_3"></p>
      <p class="child_3"></p>
    </p>
    <p class="child_2">
      <p class="child_3"></p>
      <p class="child_3"></p>
    </p>
  </p>
</p>
<input type="button" value="先序">
<input type="button" value="中序">
<input type="button" value="后序">
<script type="text/javascript" src="遍历.js"></script>
</body>
</html>
Copy after login

js:


/**
 * Created by hp on 2016/12/22.
 */
var btn = document.getElementsByTagName('input'),
  preBtn = btn[0],
  inBtn = btn[1],
  postBtn = btn[2],
  treeRoot = document.getElementsByClassName('root')[0],
  pList = [],
  timer = null;
window.onload=function(){
  preBtn.onclick = function () {
    reset();
    preOrder(treeRoot);
    changeColor();
  }
  inBtn.onclick = function () {
    reset();
    inOrder(treeRoot);
    changeColor();
  }
  postBtn.onclick = function () {
    reset();
    postOrder(treeRoot);
    changeColor();
  }
}
/*先序遍历*/
function preOrder(node){
  if(!(node==null)){
    pList.push(node);
    preOrder(node.firstElementChild);
    preOrder(node.lastElementChild);
  }
}
/*中序遍历*/
function inOrder(node) {
  if (!(node == null)) {
    inOrder(node.firstElementChild);
    pList.push(node);
    inOrder(node.lastElementChild);
  }
}
/*后序遍历*/
function postOrder(node) {
  if (!(node == null)) {
    postOrder(node.firstElementChild);
    postOrder(node.lastElementChild);
    pList.push(node);
  }
}
/*颜色变化函数*/
function changeColor(){
  var i=0;
  pList[i].style.backgroundColor = &#39;blue&#39;;
  timer=setInterval(function(argument){
    i++;
    if(i<pList.length){
      pList[i-1].style.backgroundColor="#fff";
      pList[i].style.backgroundColor="blue";
    }
    else{
      pList[pList.length-1].style.backgroundColor="#fff";
    }
  },500)
}
function reset(){
  pList=[];
  clearInterval(timer);
  var ps=document.getElementsByTagName("p");
  for(var i=0;i
Copy after login

It can be seen that the binary tree Traversing thoughts is the same. I used to regard JS as a language for writing various special effects, but now it has always been too naive.

Related recommendations:

Detailed explanation of the definition method of complete binary tree in php

Implementation method of Java minimum binary tree heap sorting

JS implementation of data structure: tree and binary tree, binary tree traversal and basic operation methods

The above is the detailed content of JavaScript implements pre-order, in-order and post-order traversal methods of binary trees. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template