Home > Database > Mysql Tutorial > Hadoop伪分布式运行

Hadoop伪分布式运行

WBOY
Release: 2016-06-07 16:34:36
Original
1480 people have browsed it

Hadoop可以在单节点上以所谓的伪分布式模式运行,此时每一个Hadoop守护进程都作为一个独立的Java进程运行。本文通过自动化脚本配置Hadoop伪分布式模式。测试环境为VMware中的Centos 6.3, Hadoop 1.2.1.其他版本未测试。 伪分布式配置脚本 包括配置core-site.

Hadoop可以在单节点上以所谓的伪分布式模式运行,此时每一个Hadoop守护进程都作为一个独立的Java进程运行。本文通过自动化脚本配置Hadoop伪分布式模式。测试环境为VMware中的Centos 6.3, Hadoop 1.2.1.其他版本未测试。

伪分布式配置脚本

包括配置core-site.xml,hdfs-site.xml及mapred-site.xml,配置ssh免密码登陆。[1]

#!/bin/bash
# Usage: Hadoop伪分布式配置
# History:
#	20140426  annhe  完成基本功能
# Check if user is root
if [ $(id -u) != "0" ]; then
    printf "Error: You must be root to run this script!\n"
    exit 1
fi
#同步时钟
rm -rf /etc/localtime
ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
#yum install -y ntp
ntpdate -u pool.ntp.org &>/dev/null
echo -e "Time: `date` \n"
#默认为单网卡结构,多网卡的暂不考虑
IP=`ifconfig eth0 |grep "inet\ addr" |awk '{print $2}' |cut -d ":" -f2`
#伪分布式
function PseudoDistributed ()
{
	cd /etc/hadoop/
	#恢复备份
	mv core-site.xml.bak core-site.xml
	mv hdfs-site.xml.bak hdfs-site.xml
	mv mapred-site.xml.bak mapred-site.xml
	#备份
	mv core-site.xml core-site.xml.bak
	mv hdfs-site.xml hdfs-site.xml.bak
	mv mapred-site.xml mapred-site.xml.bak
	#使用下面的core-site.xml
	cat > core-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>fs.default.name</name>
		<value>hdfs://$IP:9000</value>
	</property>
</configuration>
eof
	#使用下面的hdfs-site.xml
	cat > hdfs-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>dfs.replication</name>
		<value>1</value>
	</property>
</configuration>	
eof
	#使用下面的mapred-site.xml
	cat > mapred-site.xml 
<?xml-stylesheet type="text/xsl" href="http://www.annhe.net/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
	<property>
		<name>mapred.job.tracker</name>
		<value>$IP:9001</value>
	</property>
</configuration>
eof
}
#配置ssh免密码登陆
function PassphraselessSSH ()
{
	#不重复生成私钥
	[ ! -f ~/.ssh/id_dsa ] && ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
	cat ~/.ssh/authorized_keys |grep "`cat ~/.ssh/id_dsa.pub`" &>/dev/null && r=0 || r=1
	#没有公钥的时候才添加
	[ $r -eq 1 ] && cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
	chmod 644 ~/.ssh/authorized_keys
}
#执行
function Execute ()
{
	#格式化一个新的分布式文件系统
	hadoop namenode -format
	#启动Hadoop守护进程
	start-all.sh
	echo -e "\n========================================================================"
	echo "hadoop log dir : $HADOOP_LOG_DIR"
	echo "NameNode - http://$IP:50070/"
	echo "JobTracker - http://$IP:50030/"
	echo -e "\n========================================================================="
}
PseudoDistributed 2>&1 | tee -a pseudo.log
PassphraselessSSH 2>&1 | tee -a pseudo.log
Execute 2>&1 | tee -a pseudo.log
Copy after login

脚本测试结果

[root@hadoop hadoop]# ./pseudo.sh
14/04/26 23:52:30 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = hadoop/216.34.94.184
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 1.2.1
STARTUP_MSG:   build = https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1503152; compiled by 'mattf' on Mon Jul 22 15:27:42 PDT 2013
STARTUP_MSG:   java = 1.7.0_51
************************************************************/
Re-format filesystem in /tmp/hadoop-root/dfs/name ? (Y or N) y
Format aborted in /tmp/hadoop-root/dfs/name
14/04/26 23:52:40 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop/216.34.94.184
************************************************************/
starting namenode, logging to /var/log/hadoop/root/hadoop-root-namenode-hadoop.out
localhost: starting datanode, logging to /var/log/hadoop/root/hadoop-root-datanode-hadoop.out
localhost: starting secondarynamenode, logging to /var/log/hadoop/root/hadoop-root-secondarynamenode-hadoop.out
starting jobtracker, logging to /var/log/hadoop/root/hadoop-root-jobtracker-hadoop.out
localhost: starting tasktracker, logging to /var/log/hadoop/root/hadoop-root-tasktracker-hadoop.out
========================================================================
hadoop log dir : /var/log/hadoop/root
NameNode - http://192.168.60.128:50070/
JobTracker - http://192.168.60.128:50030/
=========================================================================
Copy after login

通过宿主机上的浏览器访问NameNode和JobTracker的网络接口

namenode

浏览器访问namenode的网络接口

jobtracker

浏览器访问jobtracker网络接口

运行测试程序

将输入文件拷贝到分布式文件系统:

$ hadoop fs -put input input
Copy after login

通过网络接口查看hdfs

browserdirectory

通过NameNode网络接口查看hdfs文件系统

运行示例程序

[root@hadoop hadoop]# hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount input output
Copy after login

通过JobTracker网络接口查看执行状态

runwordcount

Wordcount执行状态

执行结果

[root@hadoop hadoop]# hadoop jar /usr/share/hadoop/hadoop-examples-1.2.1.jar wordcount input out2
14/04/27 03:34:56 INFO input.FileInputFormat: Total input paths to process : 2
14/04/27 03:34:56 INFO util.NativeCodeLoader: Loaded the native-hadoop library
14/04/27 03:34:56 WARN snappy.LoadSnappy: Snappy native library not loaded
14/04/27 03:34:57 INFO mapred.JobClient: Running job: job_201404270333_0001
14/04/27 03:34:58 INFO mapred.JobClient:  map 0% reduce 0%
14/04/27 03:35:49 INFO mapred.JobClient:  map 100% reduce 0%
14/04/27 03:36:16 INFO mapred.JobClient:  map 100% reduce 100%
14/04/27 03:36:19 INFO mapred.JobClient: Job complete: job_201404270333_0001
14/04/27 03:36:19 INFO mapred.JobClient: Counters: 29
14/04/27 03:36:19 INFO mapred.JobClient:   Job Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Launched reduce tasks=1
14/04/27 03:36:19 INFO mapred.JobClient:     SLOTS_MILLIS_MAPS=72895
14/04/27 03:36:19 INFO mapred.JobClient:     Total time spent by all reduces waiting after reserving slots (ms)=0
14/04/27 03:36:19 INFO mapred.JobClient:     Total time spent by all maps waiting after reserving slots (ms)=0
14/04/27 03:36:19 INFO mapred.JobClient:     Launched map tasks=2
14/04/27 03:36:19 INFO mapred.JobClient:     Data-local map tasks=2
14/04/27 03:36:19 INFO mapred.JobClient:     SLOTS_MILLIS_REDUCES=24880
14/04/27 03:36:19 INFO mapred.JobClient:   File Output Format Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Bytes Written=25
14/04/27 03:36:19 INFO mapred.JobClient:   FileSystemCounters
14/04/27 03:36:19 INFO mapred.JobClient:     FILE_BYTES_READ=55
14/04/27 03:36:19 INFO mapred.JobClient:     HDFS_BYTES_READ=260
14/04/27 03:36:19 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=164041
14/04/27 03:36:19 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=25
14/04/27 03:36:19 INFO mapred.JobClient:   File Input Format Counters
14/04/27 03:36:19 INFO mapred.JobClient:     Bytes Read=25
14/04/27 03:36:19 INFO mapred.JobClient:   Map-Reduce Framework
14/04/27 03:36:19 INFO mapred.JobClient:     Map output materialized bytes=61
14/04/27 03:36:19 INFO mapred.JobClient:     Map input records=2
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce shuffle bytes=61
14/04/27 03:36:19 INFO mapred.JobClient:     Spilled Records=8
14/04/27 03:36:19 INFO mapred.JobClient:     Map output bytes=41
14/04/27 03:36:19 INFO mapred.JobClient:     Total committed heap usage (bytes)=414441472
14/04/27 03:36:19 INFO mapred.JobClient:     CPU time spent (ms)=2910
14/04/27 03:36:19 INFO mapred.JobClient:     Combine input records=4
14/04/27 03:36:19 INFO mapred.JobClient:     SPLIT_RAW_BYTES=235
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce input records=4
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce input groups=3
14/04/27 03:36:19 INFO mapred.JobClient:     Combine output records=4
14/04/27 03:36:19 INFO mapred.JobClient:     Physical memory (bytes) snapshot=353439744
14/04/27 03:36:19 INFO mapred.JobClient:     Reduce output records=3
14/04/27 03:36:19 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=2195972096
14/04/27 03:36:19 INFO mapred.JobClient:     Map output records=4
Copy after login

查看结果

[root@hadoop hadoop]# hadoop fs -cat out2/*
hadoop  1
hello   2
world   1
Copy after login

也可以将分布式文件系统上的文件拷贝到本地查看

[root@hadoop hadoop]# hadoop fs -get out2 out4
[root@hadoop hadoop]# cat out4/*
cat: out4/_logs: Is a directory
hadoop  1
hello   2
world   1
Copy after login

完成全部操作后,停止守护进程:

[root@hadoop hadoop]# stop-all.sh
stopping jobtracker
localhost: stopping tasktracker
stopping namenode
localhost: stopping datanode
localhost: stopping secondarynamenode
Copy after login

遇到的问题

宿主机不能访问网络接口

因为开启了iptables,所以需要添加相应端口,当然测试环境也可以直接将iptables关闭。

# Firewall configuration written by system-config-firewall
# Manual customization of this file is not recommended.
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50070 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50030 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 50075 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT
Copy after login

Browse the filesystem跳转地址不对

NameNode网络接口点击Browse the filesystem,跳转到localhost:50075。[2][3]

修改core-site.xml,将hdfs://localhost:9000改成虚拟机ip地址。(上面的脚本已经改写为自动配置为IP)。

根据几次改动的情况,这里也是可以填写域名的,只是要在访问的机器上能解析这个域名。因此公网环境中有DNS服务器的应该是可以设置域名的。

执行reduce的时候卡死

在/etc/hosts中添加主机名对应的ip地址 [4][5]。(已更新Hadoop安装脚本,会自动配置此项)

127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
127.0.0.1   hadoop  #添加这一行
Copy after login

参考文献

[1]. Hadoop官方文档.?http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html

[2]. Stackoverflow.?http://stackoverflow.com/questions/15254492/wrong-redirect-from-hadoop-hdfs-namenode-to-localhost50075

[3]. Iteye.?http://yymmiinngg.iteye.com/blog/706909

[4].Stackoverflow.?http://stackoverflow.com/questions/10165549/hadoop-wordcount-example-stuck-at-map-100-reduce-0

[5]. 李俊的博客.?http://www.colorlight.cn/archives/32

 


本文遵从CC版权协定,转载请以链接形式注明出处。
本文链接地址: http://www.annhe.net/article-2682.html
Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template