Use of MapReduce in MongoDB

小云云
Release: 2023-03-17 20:26:01
Original
1856 people have browsed it

Friends who have played Hadoop should be familiar with MapReduce. MapReduce is powerful and flexible. It can split a large problem into multiple small problems and send each small problem to different machines for processing. All machines After all calculations are completed, the calculation results are combined into a complete solution. This is called distributed computing. In this article, we will take a look at the use of MapReduce in MongoDB.

mapReduce

MapReduce in MongoDB can be used to implement more complex aggregation commands. Using MapReduce mainly implements two functions: map function and reduce function. The map function is used to generate a sequence of key-value pairs. The result of the map function is used as a parameter of the reduce function. Further statistics are done in the reduce function. For example, my data set is as follows:

{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"}
{"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}
Copy after login

If I want to query each author The total price of the books published, the operation is as follows:

var map=function(){emit(this.name,this.price)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"totalPrice"}
db.sang_books.mapReduce(map,reduce,options);
db.totalPrice.find()
Copy after login

emit function is mainly used to implement grouping and receives two parameters. The first parameter represents the grouping field, and the second parameter represents the data to be counted. Reduce performs specific data processing operations and receives two parameters, corresponding to the two parameters of the emit method. Here, the sum function in Array is used to perform self-processing on the price field. Options defines a set for outputting the results. At that time, we The data will be queried in this collection. By default, this collection will be retained even after the database is restarted, and the data in the collection will be retained. The query results are as follows:

{
    "_id" : "曹雪芹",
    "value" : 22.0
}
{
    "_id" : "钱钟书",
    "value" : 165.0
}
{
    "_id" : "鲁迅",
    "value" : 93.0
}
Copy after login

For another example, I want to query how many books each author has published, as follows:

var map=function(){emit(this.name,1)}
var reduce=function(key,value){return Array.sum(value)}
var options={out:"bookNum"}
db.sang_books.mapReduce(map,reduce,options);
db.bookNum.find()
Copy after login

The query results are as follows:

{
    "_id" : "曹雪芹",
    "value" : 1.0
}
{
    "_id" : "钱钟书",
    "value" : 2.0
}
{
    "_id" : "鲁迅",
    "value" : 2.0
}
Copy after login

Put each author’s The books are listed as follows:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()
Copy after login

The results are as follows:

{
    "_id" : "曹雪芹",
    "value" : "红楼梦"
}
{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "呐喊,彷徨"
}
Copy after login

For example, if you query the books that each person sells for more than ¥40:

var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
var options={query:{price:{$gt:40}},out:"books"}
db.sang_books.mapReduce(map,reduce,options);
db.books.find()
Copy after login

query means to check the found set Filter again.

The results are as follows:

{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "彷徨"
}
Copy after login

runCommand implementation

We can also use the runCommand command to execute MapReduce. The format is as follows:

db.runCommand(
               {
                 mapReduce: <collection>,
                 map: <function>,
                 reduce: <function>,
                 finalize: <function>,
                 out: <output>,
                 query: <document>,
                 sort: <document>,
                 limit: <number>,
                 scope: <document>,
                 jsMode: <boolean>,
                 verbose: <boolean>,
                 bypassDocumentValidation: <boolean>,
                 collation: <document>
               }
             )
Copy after login

The meaning is as follows:

##reduce reduce functionfinalizeFinal processing functionoutOutput Collection of ##query##sortSort the resultslimitThe number of results returnedscopeSet the parameter value, the value set here is in map , visible in the reduce and finalize functionsjsMode Whether to convert the intermediate data of map execution from javascript object to BSON object, the default is falseverboseWhether to display detailed time statisticsbypassDocumentValidationWhether to bypass document validationcollationSome other collationsThe following operation means performing a MapReduce operation and limiting the number of items returned to the statistical collection, limiting the return After the number of items, the statistical operation is performed, as follows:
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true})
db.books.find()
Copy after login
Parameter Meaning
mapReduce Represents the collection to be operated
map map function
Filter the results
The execution results are as follows:

{
    "_id" : "曹雪芹",
    "value" : "红楼梦"
}
{
    "_id" : "钱钟书",
    "value" : "宋诗选注,谈艺录"
}
{
    "_id" : "鲁迅",
    "value" : "呐喊"
}
Copy after login
My friends saw that one of Lu Xun’s books was missing, because limit first limits the collection of returned items. number, and then perform statistical operations.

The finalize operation represents the final processing function, as follows:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1})
db.books.find()
Copy after login
f1 The first parameter key represents the first parameter in emit, and the second parameter represents the execution result of reduce. We can This result is reprocessed in f1, and the result is as follows:

{
    "_id" : "曹雪芹",
    "value" : {
        "author" : "曹雪芹",
        "books" : "红楼梦"
    }
}
{
    "_id" : "钱钟书",
    "value" : {
        "author" : "钱钟书",
        "books" : "宋诗选注,谈艺录"
    }
}
{
    "_id" : "鲁迅",
    "value" : {
        "author" : "鲁迅",
        "books" : "呐喊,彷徨"
    }
}
Copy after login
scope can be used to define a variable that is visible in map, reduce, and finalize, as follows:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj}
var map=function(){emit(this.name,this.book)}
var reduce=function(key,value){return value.join(',--'+sang+'--,')}
db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}})
db.books.find()
Copy after login
The execution result is as follows :

{
    "_id" : "曹雪芹",
    "value" : {
        "author" : "曹雪芹",
        "books" : "红楼梦",
        "sang" : "haha"
    }
}
{
    "_id" : "钱钟书",
    "value" : {
        "author" : "钱钟书",
        "books" : "宋诗选注,--haha--,谈艺录",
        "sang" : "haha"
    }
}
{
    "_id" : "鲁迅",
    "value" : {
        "author" : "鲁迅",
        "books" : "呐喊,--haha--,彷徨",
        "sang" : "haha"
    }
}
Copy after login
I hope you will gain something from this article.

Related recommendations:

MongoDB mapreduce usage and PHP sample code

How to increase MongoDB MapReduce speed by 20 times

Implementing MapReduce in Oracle database

The above is the detailed content of Use of MapReduce in MongoDB. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template