Home > Backend Development > PHP Tutorial > How to implement two-layer neural network and perceptron model in Python

How to implement two-layer neural network and perceptron model in Python

php中世界最好的语言
Release: 2023-03-18 06:30:02
Original
2141 people have browsed it

This article will share with you how to use Python to implement a two-layer neural network and perceptron model. The specific content and examples are as follows for your reference

python 3.4 Because numpy is used

Here we first implement a perceptron model to achieve the following correspondence

[[0,0,1], ——- 0 
 [0,1,1], ——- 1 
 [1,0,1], ——- 0 
 [1,1,1]] ——- 1
Copy after login

It can be seen from the above data: the input is three channels, and the output It's single channel.


Activation hereFunctionWe use the sigmoid function f(x)=1/(1+exp(-x))

The derivative derivation is as follows:

L0=W*X;
 z=f(L0);
 error=y-z;
 delta =error * f'(L0) * X;
 W=W+delta;
Copy after login

The python code is as follows:

import numpy as np
 
#sigmoid function
 
def nonlin(x, deriv = False):
  if(deriv==True):
    return x*(1-x)
  return 1/(1+np.exp(-x))
 
 
# input dataset
 
X=np.array([[0,0,1],
      [0,1,1],
      [1,0,1],
      [1,1,1]])
 
# output dataset
 
y=np.array([[0,1,0,1]]).T
 
#seed( ) 用于指定随机数生成时所用算法开始的整数值,
#如果使用相同的seed( )值,则每次生成的随即数都相同,
#如果不设置这个值,则系统根据时间来自己选择这个值,
#此时每次生成的随机数因时间差异而不同。
np.random.seed(1) 
 
# init weight value with mean 0
 
syn0 = 2*np.random.random((3,1))-1  
 
for iter in range(1000):
  # forward propagation
  L0=X
  L1=nonlin(np.dot(L0,syn0))
 
  # error
  L1_error=y-L1
 
  L1_delta = L1_error*nonlin(L1,True)
 
  # updata weight
  syn0+=np.dot(L0.T,L1_delta)
 
print("Output After Training:")
print(L1)
Copy after login


It can be seen from the output results that the corresponding relationship is basically achieved.

Next, a two-layer network is used to achieve the above task. A hidden layer is added here, and the hidden layer contains 4 neurons.


   
import numpy as np
 
def nonlin(x, deriv = False):
  if(deriv == True):
    return x*(1-x)
  else:
    return 1/(1+np.exp(-x))
 
#input dataset
X = np.array([[0,0,1],
       [0,1,1],
       [1,0,1],
       [1,1,1]])
 
#output dataset
y = np.array([[0,1,1,0]]).T
 
#the first-hidden layer weight value
syn0 = 2*np.random.random((3,4)) - 1
 
#the hidden-output layer weight value
syn1 = 2*np.random.random((4,1)) - 1
 
for j in range(60000):
  l0 = X     
  #the first layer,and the input layer
  l1 = nonlin(np.dot(l0,syn0))
  #the second layer,and the hidden layer
  l2 = nonlin(np.dot(l1,syn1))
  #the third layer,and the output layer
 
 
  l2_error = y-l2   
  #the hidden-output layer error
 
  if(j%10000) == 0:
    print "Error:"+str(np.mean(l2_error))
 
  l2_delta = l2_error*nonlin(l2,deriv = True)
 
  l1_error = l2_delta.dot(syn1.T)  
  #the first-hidden layer error
 
  l1_delta = l1_error*nonlin(l1,deriv = True)
 
  syn1 += l1.T.dot(l2_delta)
  syn0 += l0.T.dot(l1_delta)
 
print "outout after Training:"
print l2
Copy after login


I believe you have mastered the methods after reading these cases. For more exciting information, please pay attention to other related articles on the php Chinese website!

Related reading:

Detailed code examples of how to implement stack data structure and bracket matching algorithm in php

The most popular in php Simple string matching algorithm, php matching algorithm_PHP tutorial

The simplest string matching algorithm tutorial in php

The above is the detailed content of How to implement two-layer neural network and perceptron model in Python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template