This article mainly introduces the adjacency matrix representation of PHP implementation graph and several simple traversal algorithms. It analyzes the definition of PHP implementation graph based on adjacency matrix and related traversal operation skills in the form of examples. Friends who need it can refer to it
The details are as follows:
In web development, graph data structures are much less used than trees, but they often appear in some businesses. Here are several graph path-finding algorithms. And use PHP to implement it.
Freud's algorithm mainly traverses the vertex set according to the weight of the adjacent edges between points. If the two points are not connected, the weight will be infinite. In this way, through multiple traversals The shortest path from point to point can be obtained. It is the easiest to understand logically and is relatively simple to implement. The time complexity is O(n^3);
Dijkstra algorithm, used to implement the shortest route in OSPF The classic algorithm, the essence of the djisktra algorithm is a greedy algorithm. It continuously traverses and expands the vertex path set S. Once a shorter point-to-point path is found, it replaces the original shortest path in S. After completing all traversals, S is the set of all vertices. The shortest path is set. The time complexity of Dijkstra's algorithm is O(n^2);
Kruskal's algorithm constructs a minimum spanning tree in the graph to connect all vertices in the graph. Thus the shortest path is obtained. The time complexity is O(N*logN);
##
<?php /** * PHP 实现图邻接矩阵 */ class MGraph{ private $vexs; //顶点数组 private $arc; //边邻接矩阵,即二维数组 private $arcData; //边的数组信息 private $direct; //图的类型(无向或有向) private $hasList; //尝试遍历时存储遍历过的结点 private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿 private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值 private $primVexs; //prim算法时保存顶点 private $primArc; //prim算法时保存边 private $krus;//kruscal算法时保存边的信息 public function MGraph($vexs, $arc, $direct = 0){ $this->vexs = $vexs; $this->arcData = $arc; $this->direct = $direct; $this->initalizeArc(); $this->createArc(); } private function initalizeArc(){ foreach($this->vexs as $value){ foreach($this->vexs as $cValue){ $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity); } } } //创建图 $direct:0表示无向图,1表示有向图 private function createArc(){ foreach($this->arcData as $key=>$value){ $strArr = str_split($key); $first = $strArr[0]; $last = $strArr[1]; $this->arc[$first][$last] = $value; if(!$this->direct){ $this->arc[$last][$first] = $value; } } } //floyd算法 public function floyd(){ $path = array();//路径数组 $distance = array();//距离数组 foreach($this->arc as $key=>$value){ foreach($value as $k=>$v){ $path[$key][$k] = $k; $distance[$key][$k] = $v; } } for($j = 0; $j < count($this->vexs); $j ++){ for($i = 0; $i < count($this->vexs); $i ++){ for($k = 0; $k < count($this->vexs); $k ++){ if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){ $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]]; $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]; } } } } return array($path, $distance); } //djikstra算法 public function dijkstra(){ $final = array(); $pre = array();//要查找的结点的前一个结点数组 $weight = array();//权值和数组 foreach($this->arc[$this->vexs[0]] as $k=>$v){ $final[$k] = 0; $pre[$k] = $this->vexs[0]; $weight[$k] = $v; } $final[$this->vexs[0]] = 1; for($i = 0; $i < count($this->vexs); $i ++){ $key = 0; $min = $this->infinity; for($j = 1; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && $weight[$temp] < $min){ $key = $temp; $min = $weight[$temp]; } } $final[$key] = 1; for($j = 0; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){ $pre[$temp] = $key; $weight[$temp] = $min + $this->arc[$key][$temp]; } } } return $pre; } //kruscal算法 private function kruscal(){ $this->krus = array(); foreach($this->vexs as $value){ $krus[$value] = 0; } foreach($this->arc as $key=>$value){ $begin = $this->findRoot($key); foreach($value as $k=>$v){ $end = $this->findRoot($k); if($begin != $end){ $this->krus[$begin] = $end; } } } } //查找子树的尾结点 private function findRoot($node){ while($this->krus[$node] > 0){ $node = $this->krus[$node]; } return $node; } //prim算法,生成最小生成树 public function prim(){ $this->primVexs = array(); $this->primArc = array($this->vexs[0]=>0); for($i = 1; $i < count($this->vexs); $i ++){ $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]]; $this->primVexs[$this->vexs[$i]] = $this->vexs[0]; } for($i = 0; $i < count($this->vexs); $i ++){ $min = $this->infinity; $key; foreach($this->vexs as $k=>$v){ if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){ $key = $v; $min = $this->primArc[$v]; } } $this->primArc[$key] = 0; foreach($this->arc[$key] as $k=>$v){ if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){ $this->primArc[$k] = $v; $this->primVexs[$k] = $key; } } } return $this->primVexs; } //一般算法,生成最小生成树 public function bst(){ $this->primVexs = array($this->vexs[0]); $this->primArc = array(); next($this->arc[key($this->arc)]); $key = NULL; $current = NULL; while(count($this->primVexs) < count($this->vexs)){ foreach($this->primVexs as $value){ foreach($this->arc[$value] as $k=>$v){ if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){ if($key == NULL || $v < current($current)){ $key = $k; $current = array($value . $k=>$v); } } } } $this->primVexs[] = $key; $this->primArc[key($current)] = current($current); $key = NULL; $current = NULL; } return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc); } //一般遍历 public function reserve(){ $this->hasList = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; } foreach($value as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; } } } foreach($this->vexs as $v){ if(!in_array($v, $this->hasList)) $this->hasList[] = $v; } return implode($this->hasList); } //广度优先遍历 public function bfs(){ $this->hasList = array(); $this->queue = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; $this->queue[] = $value; while(!empty($this->queue)){ $child = array_shift($this->queue); foreach($child as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; $this->queue[] = $this->arc[$k]; } } } } } return implode($this->hasList); } //执行深度优先遍历 public function excuteDfs($key){ $this->hasList[] = $key; foreach($this->arc[$key] as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)) $this->excuteDfs($k); } } //深度优先遍历 public function dfs(){ $this->hasList = array(); foreach($this->vexs as $key){ if(!in_array($key, $this->hasList)) $this->excuteDfs($key); } return implode($this->hasList); } //返回图的二维数组表示 public function getArc(){ return $this->arc; } //返回结点个数 public function getVexCount(){ return count($this->vexs); } } $a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'); $b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值 $test = new MGraph($a, $b); print_r($test->bst());
Array ( [vexs] => Array ( [0] => a [1] => b [2] => f [3] => i [4] => c [5] => g [6] => h [7] => e [8] => d ) [arc] => Array ( [ab] => 10 [af] => 11 [bi] => 12 [ic] => 8 [bg] => 16 [gh] => 19 [he] => 7 [hd] => 16 ) )
PHP implementation of binary tree depth and breadth first traversal algorithm steps Detailed explanation
JavaScript sharing of recursive traversal and non-recursive traversal algorithms for multi-trees
Summary of PHP traversal algorithm
The above is the detailed content of PHP implements graph adjacency matrix representation and traversal algorithm. For more information, please follow other related articles on the PHP Chinese website!