基于Python如何使用AIML搭建聊天机器人
借助 Python 的 AIML 包,我们很容易实现人工智能聊天机器人。AIML,全名为Artificial Intelligence Markup Language(人工智能标记语言),是一种创建自然语言软件代理的XML语言,是由Richard Wallace和世界各地的自由软件社区在1995年至2002年发明的。
AIML 是什么?
AIML由Richard Wallace发明。他设计了一个名为 A.L.I.C.E. (Artificial Linguistics Internet Computer Entity 人工语言网计算机实体) 的机器人,并获得了多项人工智能大奖。有趣的是,图灵测试的其中一项就在寻找这样的人工智能:人与机器人通过文本界面展开数分钟的交流,以此查看机器人是否会被当作人类。AIML是一种为了匹配模式和确定响应而进行规则定义的 XML 格式。
AIML的官方网站:ALICE。
本文简单介绍下如何用Python编写简单的聊天机器人。
1. 安装Python aiml库
pip install aiml
2. 获取alice资源
Python aiml安装完成后在Python安装目录下的 Lib/site-packages/aiml下会有alice子目录,将此目录复制到工作区。
或者在Google code上下载alice brain: aiml-en-us-foundation-alice.v1-9.zip
3. Python下加载alice
取得alice资源之后就可以直接利用Python aiml库加载alice brain了:
import aiml os.chdir('./res/alice') #切换工作目录到alice文件夹下,视具体情况而定 alice = aiml.Kernel() alice.learn("startup.xml") alice.respond('LOAD ALICE')
注意加载时需要切换工作目录到alice下。
4. 与alice聊天
加载之后就可以与alice聊天了,每次只需要调用respond接口:
alice.respond('hello') #这里的hello即为发给机器人的信息
5. 用Tornado搭建聊天机器人网站
利用Tornado可以很方便地搭建一个web接口的聊天机器人。具体的代码可以在此链接下在:web接口的聊天机器人。
下载此代码之后直接运行main.py即可,然后可以通过浏览器访问url与聊天机器人,url类似http://localhost/aiml?req=hello的形式(req参数即为发给机器人的信息)。
注意要运行此代码,需要安装Python 的aiml与Tornado库。
lwons.com上已经搭建了这样的web接口,可以访问http://lwons.com/aiml?req=hello来测试下。
6. 搭建聊天机器人微信订阅号
上一步的web接口可以很方便地改造成一个微信订阅号,实现的效果可以添加微信订阅号 CuriousGuys 后直接发送消息。如果需要微信订阅号的代码可以私信我。
订阅号效果截图:
以上所述给大家介绍了基于Python如何使用AIML搭建聊天机器人的相关内容,希望本文所述对大家有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
