Home Backend Development Python Tutorial Detailed explanation of scrapy examples of python crawler framework

Detailed explanation of scrapy examples of python crawler framework

Oct 18, 2016 am 10:25 AM

Generate Project

Scrapy provides a tool to generate projects. Some files are preset in the generated project, and users need to add their own code to these files.

Open the command line and execute: scrapy startproject tutorial. The generated project has a structure similar to the following

tutorial/

  scrapy.cfg

  tutorial/

    __init__.py

  items.py

 pipelines.py

settings .py

            spiders/

                                                                                                                                                           The name attribute is important , different spiders cannot use the same name

start_urls is the starting point for spiders to crawl web pages, and can include multiple URLs

parse method is the callback called by default after spider captures a web page, avoid using this name to define your own method .

When the spider gets the content of the url, it will call the parse method and pass it a response parameter. The response contains the content of the captured web page. In the parse method, you can parse the data from the captured web page. The code above simply saves the web page content to a file.

Start crawling

You can open the command line, enter the generated project root directory tutorial/, and execute scrapy crawl dmoz, where dmoz is the name of the spider.


Parse web page content

scrapy provides a convenient way to parse data from web pages, which requires the use of HtmlXPathSelector

from scrapy.spider import BaseSpider
class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]
    def parse(self, response):
        filename = response.url.split("/")[-2]
        open(filename, 'wb').write(response.body)
Copy after login

HtmlXPathSelector uses Xpath to parse data


//ul/li means to select all ul tags The li tag below

a/@href means selecting the href attribute of all a tags

a/text() means selecting the a tag text

a[@href="abc"] means selecting all a whose href attribute is abc Tag

We can save the parsed data in an object that scrapy can use, and then scrapy can help us save these objects without having to save the data to a file ourselves. We need to add some classes to items.py, which are used to describe the data we want to save

from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]
    def parse(self, response):
        hxs = HtmlXPathSelector(response)
        sites = hxs.select('//ul/li')
        for site in sites:
            title = site.select('a/text()').extract()
            link = site.select('a/@href').extract()
            desc = site.select('text()').extract()
            print title, link, desc
Copy after login

When executing scrapy on the command line, we can add two parameters to let scrapy output the items returned by the parse method to json In the file

scrapy crawl dmoz -o items.json -t json

items.json will be placed in the root directory of the project

Let scrapy automatically crawl all links on the webpage

In the example above, scrapy Only the contents of the two URLs in start_urls are crawled, but usually what we want to achieve is for scrapy to automatically discover all the links on a web page, and then crawl the contents of these links. In order to achieve this, we can extract the links we need in the parse method, then construct some Request objects and return them. Scrapy will automatically crawl these links. The code is similar:

from scrapy.item import Item, Field
class DmozItem(Item):
   title = Field()
   link = Field()
   desc = Field()
然后在spider的parse方法中,我们把解析出来的数据保存在DomzItem对象中。
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from tutorial.items import DmozItem
class DmozSpider(BaseSpider):
   name = "dmoz"
   allowed_domains = ["dmoz.org"]
   start_urls = [
       "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
       "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
   ]
   def parse(self, response):
       hxs = HtmlXPathSelector(response)
       sites = hxs.select('//ul/li')
       items = []
       for site in sites:
           item = DmozItem()
           item['title'] = site.select('a/text()').extract()
           item['link'] = site.select('a/@href').extract()
           item['desc'] = site.select('text()').extract()
           items.append(item)
       return items
Copy after login

parse is the default callback, which returns a Request list. Scrapy automatically crawls web pages based on this list. Whenever a web page is captured, parse_item will be called, and parse_item will also return a list. Scrapy will The web page will be crawled based on this list, and parse_details will be called after crawling


In order to make such work easier, scrapy provides another spider base class, using which we can easily implement automatic crawling of links. We need to use CrawlSpider

class MySpider(BaseSpider):
    name = 'myspider'
    start_urls = (
        'http://example.com/page1',
        'http://example.com/page2',
        )
    def parse(self, response):
        # collect `item_urls`
        for item_url in item_urls:
            yield Request(url=item_url, callback=self.parse_item)
    def parse_item(self, response):
        item = MyItem()
        # populate `item` fields
        yield Request(url=item_details_url, meta={'item': item},
            callback=self.parse_details)
    def parse_details(self, response):
        item = response.meta['item']
        # populate more `item` fields
        return item
Copy after login

Compared with BaseSpider, the new class has an additional rules attribute. This attribute is a list, which can contain multiple Rules. Each Rule describes which links need to be crawled and which do not. This is the documentation for the Rule class http://doc.scrapy.org/en/latest/topics/spiders.html#scrapy.contrib.spiders.Rule

These rules can have callbacks or not, when there is no callback , scrapy simply follows all these links.

Usage of pipelines.py

In pipelines.py we can add some classes to filter out the items we don’t want and save the items to the database.

from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
class MininovaSpider(CrawlSpider):
    name = 'mininova.org'
    allowed_domains = ['mininova.org']
    start_urls = ['http://www.mininova.org/today']
    rules = [Rule(SgmlLinkExtractor(allow=['/tor/\d+'])),
             Rule(SgmlLinkExtractor(allow=['/abc/\d+']), 'parse_torrent')]
    def parse_torrent(self, response):
        x = HtmlXPathSelector(response)
        torrent = TorrentItem()
        torrent['url'] = response.url
        torrent['name'] = x.select("//h1/text()").extract()
        torrent['description'] = x.select("//div[@id='description']").extract()
        torrent['size'] = x.select("//div[@id='info-left']/p[2]/text()[2]").extract()
        return torrent
Copy after login

If the item does not meet the requirements, then an exception will be thrown and the item will not be output to the json file.

To use pipelines, we also need to modify settings.py

Add a line

ITEM_PIPELINES = ['dirbot.pipelines.FilterWordsPipeline']

Now execute scrapy crawl dmoz -o items.json -t json, which does not meet the requirements The item was filtered out

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1659
14
PHP Tutorial
1257
29
C# Tutorial
1231
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles