


Python's Flask framework application calls Redis queue data
Task asynchronousization
Open the browser, enter the address, press Enter, and open the page. So an HTTP request (request) is sent from the client to the server, and the server processes the request and returns the response (response) content.
We browse the web every day and send large and small requests to the server. Sometimes, when the server receives a request, it will find that it also needs to send a request to another server, or the server also needs to do something else, so the request they originally sent is blocked, that is, it has to wait for the server to complete other things.
More often, the additional things done by the server do not require the client to wait. At this time, these additional things can be done asynchronously. There are many tools for doing asynchronous tasks. The main principle is still to process notification messages. For notification messages, a queue structure is usually adopted. Produce and consume messages for communication and business implementation.
Production, consumption and queue
The implementation of the above asynchronous tasks can be abstracted into the producer consumption model. Just like a restaurant, the chef is cooking and the foodies are eating. If the chef cooks a lot and cannot sell all the items for the time being, the chef will take a break; if there are many customers and the chef is busy non-stop, the customers need to wait slowly. There are many ways to implement producers and consumers. Here is a small example using the Python standard library Queue:
import random import time from Queue import Queue from threading import Thread queue = Queue(10) class Producer(Thread): def run(self): while True: elem = random.randrange(9) queue.put(elem) print "厨师 {} 做了 {} 饭 --- 还剩 {} 饭没卖完".format(self.name, elem, queue.qsize()) time.sleep(random.random()) class Consumer(Thread): def run(self): while True: elem = queue.get() print "吃货{} 吃了 {} 饭 --- 还有 {} 饭可以吃".format(self.name, elem, queue.qsize()) time.sleep(random.random()) def main(): for i in range(3): p = Producer() p.start() for i in range(2): c = Consumer() c.start() if __name__ == '__main__': main()
The approximate output is as follows:
厨师 Thread-1 做了 1 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 2 饭没卖完 厨师 Thread-3 做了 3 饭 --- 还剩 3 饭没卖完 吃货Thread-4 吃了 1 饭 --- 还有 2 饭可以吃 吃货Thread-5 吃了 8 饭 --- 还有 1 饭可以吃 吃货Thread-4 吃了 3 饭 --- 还有 0 饭可以吃 厨师 Thread-1 做了 0 饭 --- 还剩 1 饭没卖完 厨师 Thread-2 做了 0 饭 --- 还剩 2 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 3 饭没卖完 厨师 Thread-1 做了 1 饭 --- 还剩 4 饭没卖完 吃货Thread-4 吃了 0 饭 --- 还有 3 饭可以吃 厨师 Thread-3 做了 3 饭 --- 还剩 4 饭没卖完 吃货Thread-5 吃了 0 饭 --- 还有 3 饭可以吃 吃货Thread-5 吃了 1 饭 --- 还有 2 饭可以吃 厨师 Thread-2 做了 8 饭 --- 还剩 3 饭没卖完 厨师 Thread-2 做了 8 饭 --- 还剩 4 饭没卖完
Redis Queue
Python has a built-in useful queue structure. We can also use redis to implement similar operations. and do a simple asynchronous task.
Redis provides two ways to do message queues. One is to use the producer consumption model, and the other is the publish-subscriber model. The former will let one or more clients monitor the message queue. Once the message arrives, the consumer will consume it immediately. Whoever grabs it first will be the winner. If there is no message in the queue, the consumer will continue to listen. The latter is also one or more clients subscribing to the message channel. As long as the publisher publishes the message, all subscribers can receive the message and the subscribers are pinged.
Production and consumption mode
Mainly uses blpop provided by redis to obtain queue data. If there is no data in the queue, it will block and wait, that is, listening.
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.queue = 'task:prodcons:queue' def listen_task(self): while True: task = self.rcon.blpop(self.queue, 0)[1] print "Task get", task if __name__ == '__main__': print 'listen task queue' Task().listen_task()
Publish and subscribe mode
Using the pubsub function of redis, the subscriber subscribes to the channel, and the publisher publishes the message to the channel. A channel is a message queue.
import redis class Task(object): def __init__(self): self.rcon = redis.StrictRedis(host='localhost', db=5) self.ps = self.rcon.pubsub() self.ps.subscribe('task:pubsub:channel') def listen_task(self): for i in self.ps.listen(): if i['type'] == 'message': print "Task get", i['data'] if __name__ == '__main__': print 'listen task channel' Task().listen_task()
Flask entrance
We have implemented two back-end services for asynchronous tasks respectively. Start them directly and you can monitor them. Messages from the redis queue or channel. The simple test is as follows:
import redis import random import logging from flask import Flask, redirect app = Flask(__name__) rcon = redis.StrictRedis(host='localhost', db=5) prodcons_queue = 'task:prodcons:queue' pubsub_channel = 'task:pubsub:channel' @app.route('/') def index(): html = """ <br> <center><h3>Redis Message Queue</h3> <br> <a href="/prodcons">生产消费者模式</a> <br> <br> <a href="/pubsub">发布订阅者模式</a> </center> """ return html @app.route('/prodcons') def prodcons(): elem = random.randrange(10) rcon.lpush(prodcons_queue, elem) logging.info("lpush {} -- {}".format(prodcons_queue, elem)) return redirect('/') @app.route('/pubsub') def pubsub(): ps = rcon.pubsub() ps.subscribe(pubsub_channel) elem = random.randrange(10) rcon.publish(pubsub_channel, elem) return redirect('/') if __name__ == '__main__': app.run(debug=True)
Start the script and use
siege -c10 -r 5 http://127.0.0.1:5000/prodcons siege -c10 -r 5 http://127.0.0.1:5000/pubsub
to start the script respectively. Asynchronous messages are seen in the listened script input. In asynchronous tasks, you can perform some time-consuming operations. Of course, these current methods do not know the asynchronous execution results. If you need to know the asynchronous execution results, you can consider designing coroutine tasks or using some tools such as RQ or celery.
For more articles related to Python’s Flask framework application calling Redis queue data, please pay attention to the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
