Home > Backend Development > Python Tutorial > Detailed explanation of examples of drawing graphics with python

Detailed explanation of examples of drawing graphics with python

PHP中文网
Release: 2017-06-20 15:55:32
Original
5426 people have browsed it

1. Environment

System: windows10

python version: python3.6.1

Libraries used: matplotlib, numpy

2. Several ways for the numpy library to generate random numbers

import numpy as np
Copy after login
numpy.random##random_integers(low,high,size)
rand(d0, d1 , ..., dn)

In [2]: x=np.random.rand(2,5)

In [3]: x
Out[3 ]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461 , 0.92692517, 0.2567891 ]])

randn(d0, d1, ..., dn) query result is standard normal distribution

In [4]: ​​x=np.random.randn(2, 5)

In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377, 0.89749635],
[-0.20229338, 1.44 852833 , -0.10858996, -1.65034606, -0.39793635]])

randint(low,high,size)

Generate between low and high (Half-open interval [low, high)), size data

In [6]: x=np.random.randint(1,8,4)

In [7]: x
Out[7]: array([4, 4, 2, 7])

Generate size data between low and high (closed interval [low, high))

In [10]: x=np.random.random_integers(2,10,5)

In [11]: x

Out[11]: array([7, 4, 5, 4, 2])

3.Scatter chart

x x轴
y y轴
s   圆点面积
c   颜色
marker  圆点形状
alpha   圆点透明度                #其他图也类似这种配置
Copy after login
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
Copy after login

##4. Line chart

<code class="language-python hljs"># 来源:百度网盘搜索 <br/>x=np.linspace(<span class="hljs-number">-10000,<span class="hljs-number">10000,<span class="hljs-number">100) <span class="hljs-comment">#将-10到10等区间分成100份
y=x**<span class="hljs-number">2+x**<span class="hljs-number">3+x**<span class="hljs-number">7
plt.plot(x,y)
plt.show()</span></span></span></span></span></span></span></code>
Copy after login

Line chart uses plot function

5. Bar chart

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
plt.bar(left=index,height=y,color=&#39;red&#39;,width=0.3)
plt.bar(left=index+0.3,height=y1,color=&#39;black&#39;,width=0.3)
plt.show()
Copy after login

orientation set horizontal bar chart

N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)# plt.bar(left=index,height=y,color=&#39;red&#39;,width=0.3)# plt.bar(left=index+0.3,height=y1,color=&#39;black&#39;,width=0.3)#plt.barh() 加了h就是横向的条形图,不用设置orientation
plt.bar(left=0,bottom=index,width=y,color=&#39;red&#39;,height=0.5,orientation=&#39;horizontal&#39;)
plt.show()
Copy after login

##6. Histogram

m1=100
sigma=20
x=m1+sigma*np.random.randn(2000)
plt.hist(x,bins=50,color="green",normed=True)
plt.show()
Copy after login

# #双变量的直方图# #颜色越深频率越高# #研究双变量的联合分布
Copy after login
#双变量的直方图#颜色越深频率越高#研究双变量的联合分布
x=np.random.rand(1000)+2
y=np.random.rand(1000)+3
plt.hist2d(x,y,bins=40)
plt.show()
Copy after login

7. Pie Chart

#设置x,y轴比例为1:1,从而达到一个正的圆
Copy after login
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
Copy after login
labes=[&#39;A&#39;,&#39;B&#39;,&#39;C&#39;,&#39;D&#39;]
fracs=[15,30,45,10]
explode=[0,0.1,0.05,0]#设置x,y轴比例为1:1,从而达到一个正的圆
plt.axes(aspect=1)#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)
plt.show()
Copy after login

8. Box plot

import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)plt.show()
Copy after login
#sym 点的形状,whis虚线的长度
Copy after login

The above is the detailed content of Detailed explanation of examples of drawing graphics with python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template