Blogger Information
Blog 13
fans 0
comment 0
visits 28551
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
Pytorch网络结构可视化:PyTorch是使用GPU和CPU优化的深度学习张量库
python自学网
Original
1285 people have browsed it

 5d12f7d86032d670.jpg

安装

可以通过以下的命令进行安装

conda install pytorch-nightly -c pytorch
 
conda install graphviz
 
conda install torchvision
 
conda install tensorwatch

 基于以下的版本:

torchvision.__version__   '0.2.1'
 
torch.__version__         '1.2.0.dev20190610'
 
sys.version               '3.6.8 |Anaconda custom (64-bit)| (default, Dec 30 2018, 01:22:34)
 
[GCC 7.3.0]'

载入库

import sys
 
import torch
 
import tensorwatch as tw
 
import torchvision.models

 网络结构可视化

alexnet_model = torchvision.models.alexnet()
 
tw.draw_model(alexnet_model, [1, 3, 224, 224])

 载入alexnet,draw_model函数需要传入三个参数,第一个为model,第二个参数为input_shape,第三个参数为orientation,可以选择'LR'或者'TB',分别代表左右布局与上下布局。

在notebook中,执行完上面的代码会显示如下的图,将网络的结构及各个层的name和shape进行了可视化。

1561524283756630.png

 

统计网络参数

可以通过model_stats方法统计各层的参数情况。

1561524294665166.png

tw.model_stats(alexnet_model, [1, 3, 224, 224])
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
[MAdd]: Dropout is not supported!
 
[Flops]: Dropout is not supported!
 
[Memory]: Dropout is not supported!
 
alexnet_model.features
 
Sequential(
 
  (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
 
  (1): ReLU(inplace=True)
 
  (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
 
  (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 
  (4): ReLU(inplace=True)
 
  (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
 
  (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 
  (7): ReLU(inplace=True)
 
  (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 
  (9): ReLU(inplace=True)
 
  (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 
  (11): ReLU(inplace=True)
 
  (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
 
)
 
alexnet_model.classifier
 
Sequential(
 
  (0): Dropout(p=0.5)
 
  (1): Linear(in_features=9216, out_features=4096, bias=True)
 
  (2): ReLU(inplace=True)
 
  (3): Dropout(p=0.5)
 
  (4): Linear(in_features=4096, out_features=4096, bias=True)
 
  (5): ReLU(inplace=True)
 
  (6): Linear(in_features=4096, out_features=1000, bias=True)
 
)
Statement of this Website
The copyright of this blog article belongs to the blogger. Please specify the address when reprinting! If there is any infringement or violation of the law, please contact admin@php.cn Report processing!
All comments Speak rationally on civilized internet, please comply with News Comment Service Agreement
0 comments