Blogger Information
Blog 15
fans 0
comment 0
visits 9348
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
剖析Elasticsearch的IndexSorting:一种查询性能优化利器
Tina
Original
438 people have browsed it

前言

前两周写过一篇《基于Lucene查询原理分析Elasticsearch的性能》,在最后留了一个彩蛋,说下一篇会介绍一种可以极大的优化查询性能的技术。本文就来介绍这种技术——IndexSorting。

因为IndexSorting是在ES6.0之后才作为实验性的功能加入,相关的介绍资料还比较少,所以大部分人对它不够了解。另一方面是,想要理解它为什么能够优化性能、适合哪些场景、内部如何实现、有何副作用等,也需要花一翻功夫。所以本文专门对IndexSorting进行一个介绍,并分析它的作用、实现、适用场景等。如果你的场景能用上IndexSorting,那么它肯定会给你带来一个巨大的性能提升!

什么是IndexSorting?

IndexSorting是ES的新功能

在Elasticsearch中,IndexSorting是一个很新的功能,6.0版本才引入,并且标记这个功能是Beta版(6.5版本可能会去掉Beta标记)。

在Lucene中,IndexSorting其实已经发展了一段时间。最早在10年,Lucene提供了一个IndexSorter的工具,作为一个离线工具可以对Index数据排序后生成一个新的Index。后来13年加入了SortingMergePolicy,在Segment进行merge的时候可以生成排好序的新Segment,在17年又加入了Sorting on flushed segment的功能,在Segment最初生成时就进行排序。另一方面是Lucene在查询时也做了很多优化,如果有IndexSorting,很多地方做了提前中断,后面会讲提前中断对查询性能的巨大作用。经过几次Lucene的改进和优化,IndexSorting这个功能也终于被集成进Elasticsearch。

IndexSorting是一种预排序

与查询时的Sort不同,IndexSorting是一种预排序,即数据预先按照某种方式进行排序,它是Index的一个设置,不可更改。大家知道,Elasticsearch的底层是Lucene,Lucene中是以Segment为单位进行查询的,这里说的IndexSorting对数据进行预排序也是在每个Segment内有序的。

一个Segment中的每个文档,都会被分配一个docID,docID从0开始,顺序分配。在没有IndexSorting时,docID是按照文档写入的顺序进行分配的,在设置了IndexSorting之后,docID的顺序就与IndexSorting的顺序一致。

举个例子来说,假如文档中有一列为Timestamp,我们在IndexSorting中设置按照Timestamp逆序排序,那么在一个Segment内,docID越小,对应的文档的Timestamp越大,即按照Timestamp从大到小的顺序分配docID。

为什么IndexSorting可以优化性能?

提前中断

IndexSorting能够优化性能,主要就是靠四个字,“提前中断”。但是提前中断是有条件的,需要查询的Sort顺序与IndexSorting的顺序相同,并且不需要获取符合条件的记录总数(TotalHits)。

Lucene中的倒排链都是按照docID从小到大的顺序排列的,在进行组合条件查询时,也是按照docID从小到大的顺序选出符合条件的doc。那么当查询时的Sort顺序与IndexSorting的顺序相同时,会发生什么呢?

比如查询时希望按照Timestamp降序排序后返回100条结果,在Lucene中进行查询时,发现docID对应的doc顺序也刚好是Timestamp降序排序的,那么查询到前100个符合条件的结果即可返回,二手手机号码出售这100个一定也是Timestamp最大的100个,这就做到了提前中断。

提前中断可以极大的提升查询性能,特别是当一个查询条件命中的文档数量非常多的时候。在没有IndexSorting时,必须把所有符合条件的文档的docID扫描一遍,并且读取这些doc的一些字段来排序,选出符合条件的doc。有了IndexSorting之后,只需要选出前Top个doc即可,避免了全部扫描,性能甚至可以提升几个数量级。

IndexSorting提高了数据压缩率

Lucene中使用了很多的压缩算法来对数据进行压缩,压缩一方面减少了磁盘使用量,另一方面也减少了查询时读取磁盘的数据量和IO次数等,对查询性能有很大帮助。

Lucene中同时包括行存(Store)与列存(DocValues)的存储方式,但不管是行存还是列存,当应用IndexSorting后,相邻数据的相似度就会越高,也就越利于压缩。这不仅仅是体现在排序字段上,也体现在其他字段的相似度上。比如时序场景,当按照时间排序后,各个Metrics的值的近似度也会越大。所以IndexSorting可以提高数据的压缩率。

IndexSorting是否适合我的场景?

由排序条件决定是否适合

IndexSorting最大的作用就是优化查询性能,其适用的场景就是能够被其优化的场景,比如说:

查询时需要根据某列或者某几列排序后返回的场景:让IndexSorting顺序跟要查询的Sort顺序一致,让Lucene能够提前中断来提升性能。不关心结果顺序的场景:也可以按照某列IndexSorting,查询时也设置按照这一列Sort即可。有几种排序需求的场景:IndexSorting起码可以优化一种排序需求,其余的几种需求可以考虑是否多建几个索引,用空间换时间。

也有些场景不能被其优化,比如根据文档相似度分数排序的场景,这时候很难进行预排序,因为相似分数是每次查询时才算出来的。

根据查询原理看是否能优化

上面提到Lucene会按照docID从小到大的顺序选出符合条件的doc,但是有时查询并不是慢在这个筛选过程,而是构造docID列表的过程,这时IndexSorting带来的优化效果会比较有限。

因为Lucene的查询原理是比较复杂的,这里只列举两个例子:

对于字符串进行Range查询,且Range范围内有很多符合条件的Term的场景。这个场景下,查询可能会慢在两个地方,一个是Range范围内符合条件的Term非常多,扫描FST耗时很大,另一个如果这些Term对应的doc数很多,要构造BitSet也会非常耗时。因为利用IndexSorting的提前中断是发生在BitSet构造好之后,所以并不能优化到这个地方的性能。对数字类型在BKD-Tree上进行范围查找时,因为BKD-Tree里的docID不是顺序排列的,所以并不像倒排链一样可以顺序读取。如果BKD-Tree上符合条件的docID很多,构造BitSet也很耗时,也不是IndexSorting能够优化到的。

考虑对写入性能的影响

IndexSorting优化的是查询性能,因为在写入时需要对数据进行排序,所以降低了写性能。如果写性能是目前的性能瓶颈,或者看重写性能要高于查询性能,那么不适合使用IndexSorting。

IndexSorting是如何实现的?

本文介绍一下IndexSorting的实现细节,这也有助于大家理解它对写入性能产生的影响。IndexSorting可以保证在每个Segment中,数据都是按照设置的方式进行排序的,这要解决两个问题: 1. Lucene的Flush操作会生成Segment,这时候生成的Segment如何保证数据有序。 2. 多个Segment进行合并时如何保证有序。

1. Flush时保证Segment内数据有序

大家知道,数据写入Lucene后,并不是立即可查的,要生成Segment之后才能被查到。为了保证近实时的查询,ES会每隔一秒进行一次Refresh,Refresh就会调用到Lucene的Flush生成新的Segment。额外说的一点是,Lucene的Flush不同于ES的Flush,ES的Flush保证数据落盘,调用的是Lucene的commit,里面会调用fsync,这里的关系值得额外写一篇文章来说清楚。

我们需要先知道Flush前数据是一个什么样的状态,才能知道Flush时如何对这些数据排序。每个doc写入进来之后,按照写入顺序被分配一个docID,然后被IndexingChain处理,依次要对invert index、store fields、doc values和point values进行处理,有些数据会直接写到文件里,主要是store field和term vector,其他的数据会放到memory buffer中。

在Flush时,首先根据设定的列排序,这个排序可以利用内存中的doc values,排序之后得到老的docID到新docID的映射,因为之前docID是按照写入顺序生成的,现在重排后,生成的是新的排列。如果排序后与原来顺序完全一致,那么什么都不做,跟之前流程一样进行Flush。

如果排序后顺序发生变化,如何排序呢?对于已经写到文件中的数据,比如store field和term vector,需要从文件中读出来,重新排列后再写到一个新文件里,原来的文件就相当于一个临时文件。对于内存中的数据结构,直接在内存中重排后写到文件中。

相比没有IndexSorting时,对性能影响比较大的一块就是store field的重排,因为这部分需要从文件中读出再写回,而其他部分都是内存操作,性能影响稍小一些。这里我们也可以做一些思考,如果将store field和term vector这类数据也buffer在内存中,是否可以提升IndexSorting开启时的写入性能?

2. Merge时保证新的Segment数据有序

由于Flush时Segment已经是有序的了,所以在Merge时也就可以采用非常高效的Merge Sort的方式进行。

总结

IndexSorting是一种能够极大提高查询效率的技术,它通过预排序和提前中断大大减少了需要扫描的数据量,而且附带的优化是可以提高压缩率,减少存储空间。对于查询时需要按照某列排序的场景,它非常有用,但对于相关性分数排序的场景则无法通过预排序来优化。IndexSorting的缺点是对写入性能有影响,主要是体现在Segment的Flush和Merge阶段,对于非常看重写入性能的场景也不适合使用。总体上说,这是一项非常有用也很新的技术,相信它在Lucene和ES中的重要性会越来越强,也会有越来越多的业务场景受益于这个功能。


Statement of this Website
The copyright of this blog article belongs to the blogger. Please specify the address when reprinting! If there is any infringement or violation of the law, please contact admin@php.cn Report processing!
All comments Speak rationally on civilized internet, please comply with News Comment Service Agreement
0 comments
Author's latest blog post