大数据量数据存储分表实例(企业级应用系统)附原码
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。 例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。
例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方式进行数据查询、分析、图表。
如 按5分钟单站点的数据12*24(小时)*365(天)*(监测项)10=100W ,也就是一个站点一年数据量 100w条,100站*100W =1亿条这样的数据是无法满足快速查询。
所以我们就按照 ”tb_5M_年_站号“建表名称,tb_时间刻度_年份_站号建表 。 "TB_5M_2016_A0001", "TB_5M_2016_A0002", "TB_5M_2016_A0003",, "TB_5M_2016_A0004"
条张表 存储100W,如存储1分钟的数据单表就 500W条, 如1秒钟数据:60*500W=3亿条数据,这样不行啊,我们要以在分表,分表规则中加一个月份,tb_5M_年_月_站号,这里就不说了。
问题来,我们如何方便快捷编写代码那?,我们还想用ORM(EF)进行数据查询,就拿我们真实项目来说吧。
思路,我们用.NET开发,在数据库建基本表(tb_5m_Base)来实现EF,用 DbContext实现数据访问。
别的不多说了,直接来代码吧,
功能5分钟数据查询,用户指定开始时间、结束时间、单(多)选择站点、单(多)选择监测 项目,进行数据查询功能。
代码发如下:
public class Tb_5m_Base
{
public int ID{ get; set; }
public Datatime Time{ get; set; }
public string Pcodes { get; set; }
public double Values{ get; set; }
}
public partial class EntityFrameworkDataContext : DbContext
{
static EntityFrameworkDataContext()
{
Database.SetInitializer
}
public EntityFrameworkDataContext()
: base("Name=EntityFrameworkDataContext")
{
}
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Configurations.Add(new tb_5m_Base());
}
public DbSet TB_5m_Base{ get; set; }
}
public class BLLDataQuery
{
///
/// 获取数据
///
/// 开始日期
/// 结果日期
/// 站点ID :1,2,3
/// 监测项 :EC,PC,MC
///
public static List
{
List
string[] strArray = stationids.Split(new char[] { ',' });
int year = startTime.Year;
int num = endTime.Year;
string str = string.Empty;
string commandText = string.Empty;
pcodus=pcodus;
while (year
{
foreach (string strstationid in strArray) //站点
{
tbname= string.Format("tb_5m_{0}_{1}_Src", year, strstationid );
commandText = string.Format("Select * from {0} where TIME between '{1}' and '{2}' and pcodes in ({3}) ", new object[] { tbname, startTime, endTime, pcodus});
try
{
using (EntityFrameworkDataContext _dbcontext = EntityFrameworkDataContext.CreateDbContext)
{
list.AddRange(_dbcontext.Database.SqlQuery
}
}
catch (Exception exception)
{
}
}
year++;
}
return list;
}

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



DDREASE ist ein Tool zum Wiederherstellen von Daten von Datei- oder Blockgeräten wie Festplatten, SSDs, RAM-Disks, CDs, DVDs und USB-Speichergeräten. Es kopiert Daten von einem Blockgerät auf ein anderes, wobei beschädigte Blöcke zurückbleiben und nur gute Blöcke verschoben werden. ddreasue ist ein leistungsstarkes Wiederherstellungstool, das vollständig automatisiert ist, da es während der Wiederherstellungsvorgänge keine Unterbrechungen erfordert. Darüber hinaus kann es dank der ddasue-Map-Datei jederzeit gestoppt und fortgesetzt werden. Weitere wichtige Funktionen von DDREASE sind: Es überschreibt die wiederhergestellten Daten nicht, füllt aber die Lücken im Falle einer iterativen Wiederherstellung. Es kann jedoch gekürzt werden, wenn das Tool explizit dazu aufgefordert wird. Stellen Sie Daten aus mehreren Dateien oder Blöcken in einer einzigen wieder her

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Diese Website berichtete am 7. März, dass Dr. Zhou Yuefeng, Präsident der Datenspeicherproduktlinie von Huawei, kürzlich an der MWC2024-Konferenz teilgenommen und speziell die magnetoelektrische Speicherlösung OceanStorArctic der neuen Generation vorgestellt hat, die für warme Daten (WarmData) und kalte Daten (ColdData) entwickelt wurde. Zhou Yuefeng, Präsident der Datenspeicherproduktlinie von Huawei, hat eine Reihe innovativer Lösungen veröffentlicht: Die dieser Website beigefügte offizielle Pressemitteilung von Huawei lautet wie folgt: Die Kosten dieser Lösung sind 20 % niedriger als die von Magnetbändern Der Stromverbrauch ist 90 % niedriger als der von Festplatten. Laut Foreign Technology Media BlocksandFiles gab ein Huawei-Sprecher auch Informationen über die magnetoelektrische Speicherlösung preis: Huaweis magnetoelektronische Disk (MED) sei eine bedeutende Innovation bei magnetischen Speichermedien. ME der ersten Generation

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

Diese Woche gab FigureAI, ein Robotikunternehmen, an dem OpenAI, Microsoft, Bezos und Nvidia beteiligt sind, bekannt, dass es fast 700 Millionen US-Dollar an Finanzmitteln erhalten hat und plant, im nächsten Jahr einen humanoiden Roboter zu entwickeln, der selbstständig gehen kann. Und Teslas Optimus Prime hat immer wieder gute Nachrichten erhalten. Niemand zweifelt daran, dass dieses Jahr das Jahr sein wird, in dem humanoide Roboter explodieren. SanctuaryAI, ein in Kanada ansässiges Robotikunternehmen, hat kürzlich einen neuen humanoiden Roboter auf den Markt gebracht: Phoenix. Beamte behaupten, dass es viele Aufgaben autonom und mit der gleichen Geschwindigkeit wie Menschen erledigen kann. Pheonix, der weltweit erste Roboter, der Aufgaben autonom in menschlicher Geschwindigkeit erledigen kann, kann jedes Objekt sanft greifen, bewegen und elegant auf der linken und rechten Seite platzieren. Es kann Objekte autonom identifizieren
