Heim Datenbank MySQL-Tutorial 【原创】MySQL新旧版本ORDERBY处理方法

【原创】MySQL新旧版本ORDERBY处理方法

Jun 07, 2016 pm 02:52 PM
m mysql 原创 处理 方法 版本

MySQL 的order by 涉及到三个参数: A. sort_buffer_size 排序缓存。 B. read_rnd_buffer_size 第二次排序缓存。 C. max_length_for_sort_data 带普通列的最大排序约束。 我来简单说下MySQL的排序规则。 假设查询语句select * from tb1 where 1 order by a ;

MySQL 的order by 涉及到三个参数:

A. sort_buffer_size 排序缓存。

B. read_rnd_buffer_size 第二次排序缓存。

C. max_length_for_sort_data 带普通列的最大排序约束。


我来简单说下MySQL的排序规则。

假设查询语句select * from tb1 where 1 order by  a ; 字段a没有建立索引;以上三个参数都足够大。

MySQL内部有两种排序规则:

第一种,是普通的排序。这种排序的特点是节省内存,但是最终会对磁盘有一次随机扫描。 大概主要过程如下:

1. 由于没有WHERE条件,所以直接对磁盘进行全表扫描,把字段a以及每行的物理ID(假设为TID)拿出来。然后把所有拿到的记录全部放到sort_buffer_size中进行排序。

2. 根据排好序的TID,从磁盘随机扫描所需要的所有记录,排好序后再次把所有必须的记录放到read_rnd_buffer_size中。

第二种,是冗余排序。这种排序的特点是不需要二次对磁盘进行随机扫描,但是缺点很明显,太浪费内存空间。

跟第一种不同的是,在第一步里拿到的不仅仅是字段a以及TID,而是把所有请求的记录全部拿到后,放到sort_buffer_size中进行排序。这样可以直接从缓存中返回记录给客户端,不用再次从磁盘上获取一次。

从MySQL 5.7 后,对第二种排序进行了打包压缩处理,避免太浪费内存。比如对于varchar(255)来说,实际存储为varchar(3)。那么相比之前的方式节约了好多内存,避免缓存区域不够时,建立磁盘临时表。


以下为简单的演示

mysql> use t_girl;
Database changed
Nach dem Login kopieren


三个参数的具体值:

mysql> select truncate(@@sort_buffer_size/1024/1024,2)||'MB' as 'sort_buffer_size',truncate(@@read_rnd_buffer_size/1024/1024,2)||'MB' as read_rnd_buffer_zie,@@max_length_for_sort_data as max_length_for_sort_data;
+------------------+---------------------+--------------------------+
| sort_buffer_size | read_rnd_buffer_zie | max_length_for_sort_data |
+------------------+---------------------+--------------------------+
| 2.00MB           | 2.00MB              |                     1024 |
+------------------+---------------------+--------------------------+
1 row in set (0.00 sec)
Nach dem Login kopieren


演示表的相关数据:

mysql> select table_name,table_rows,concat(truncate(data_length/1024/1024,2),'MB') as 'table_size' from information_schema.tables where table_name = 't1' and table_schema = 't_girl';
+------------+------------+------------+
| table_name | table_rows | table_size |
+------------+------------+------------+
| t1         |    2092640 | 74.60MB    |
+------------+------------+------------+
1 row in set (0.00 sec)
Nach dem Login kopieren



开启优化器跟踪:

mysql> SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on;
Query OK, 0 rows affected (0.00 sec)
Nach dem Login kopieren


从数据字典里面拿到跟踪结果:

mysql> select * from information_schema.optimizer_trace\G
*************************** 1. row ***************************
                            QUERY: select * from t1 where id < 10 order by id
                            TRACE: {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`log_time` AS `log_time` from `t1` where (`t1`.`id` < 10) order by `t1`.`id`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "(`t1`.`id` < 10)",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "(`t1`.`id` < 10)"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "(`t1`.`id` < 10)"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "(`t1`.`id` < 10)"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "table_dependencies": [
              {
                "table": "`t1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [
              {
                "table": "`t1`",
                "table_scan": {
                  "rows": 2092640,
                  "cost": 4775
                } /* table_scan */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`t1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "scan",
                      "rows": 2.09e6,
                      "cost": 423303,
                      "chosen": true,
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "cost_for_plan": 423303,
                "rows_for_plan": 2.09e6,
                "sort_cost": 2.09e6,
                "new_cost_for_plan": 2.52e6,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "(`t1`.`id` < 10)",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`t1`",
                  "attached": "(`t1`.`id` < 10)"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`t1`.`id`",
              "items": [
                {
                  "item": "`t1`.`id`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`t1`.`id`"
            } /* clause_processing */
          },
          {
            "refine_plan": [
              {
                "table": "`t1`",
                "access_type": "table_scan"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`t1`",
                "field": "id"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,
              "cause": "not applicable (no LIMIT)"
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {
              "rows": 62390,
              "examined_rows": 2097152,
              "number_of_tmp_files": 0,
              "sort_buffer_size": 2097152,
              "sort_mode": "<sort_key, additional_fields>"
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
          INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.00 sec)
mysql>
Nach dem Login kopieren


其中以上红色部分 表示用了第二种排序规则。

其他的两种 以及分别代表第一种和后续版本MySQL的提升, 自己体验去吧。


Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Die Beziehung zwischen MySQL -Benutzer und Datenbank Die Beziehung zwischen MySQL -Benutzer und Datenbank Apr 08, 2025 pm 07:15 PM

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

MySQL: Die einfache Datenverwaltung für Anfänger MySQL: Die einfache Datenverwaltung für Anfänger Apr 09, 2025 am 12:07 AM

MySQL ist für Anfänger geeignet, da es einfach zu installieren, leistungsfähig und einfach zu verwalten ist. 1. Einfache Installation und Konfiguration, geeignet für eine Vielzahl von Betriebssystemen. 2. Unterstützung grundlegender Vorgänge wie Erstellen von Datenbanken und Tabellen, Einfügen, Abfragen, Aktualisieren und Löschen von Daten. 3. Bereitstellung fortgeschrittener Funktionen wie Join Operations und Unterabfragen. 4. Die Leistung kann durch Indexierung, Abfrageoptimierung und Tabellenpartitionierung verbessert werden. 5. Backup-, Wiederherstellungs- und Sicherheitsmaßnahmen unterstützen, um die Datensicherheit und -konsistenz zu gewährleisten.

RDS MySQL -Integration mit RedShift Zero ETL RDS MySQL -Integration mit RedShift Zero ETL Apr 08, 2025 pm 07:06 PM

Vereinfachung der Datenintegration: AmazonRDSMYSQL und Redshifts Null ETL-Integration Die effiziente Datenintegration steht im Mittelpunkt einer datengesteuerten Organisation. Herkömmliche ETL-Prozesse (Extrakt, Konvertierung, Last) sind komplex und zeitaufwändig, insbesondere bei der Integration von Datenbanken (wie AmazonRDSMysQL) in Data Warehouses (wie Rotverschiebung). AWS bietet jedoch keine ETL-Integrationslösungen, die diese Situation vollständig verändert haben und eine vereinfachte Lösung für die Datenmigration von RDSMysQL zu Rotverschiebung bietet. Dieser Artikel wird in die Integration von RDSMYSQL Null ETL mit RedShift eintauchen und erklärt, wie es funktioniert und welche Vorteile es Dateningenieuren und Entwicklern bringt.

So füllen Sie MySQL Benutzername und Passwort aus So füllen Sie MySQL Benutzername und Passwort aus Apr 08, 2025 pm 07:09 PM

Ausfüllen des MySQL -Benutzernamens und des Kennworts: 1. Bestimmen Sie den Benutzernamen und das Passwort; 2. Verbinden Sie eine Verbindung zur Datenbank; 3. Verwenden Sie den Benutzernamen und das Passwort, um Abfragen und Befehle auszuführen.

Verstehen von Säureeigenschaften: Die Säulen einer zuverlässigen Datenbank Verstehen von Säureeigenschaften: Die Säulen einer zuverlässigen Datenbank Apr 08, 2025 pm 06:33 PM

Detaillierte Erläuterung von Datenbanksäureattributen Säureattribute sind eine Reihe von Regeln, um die Zuverlässigkeit und Konsistenz von Datenbanktransaktionen sicherzustellen. Sie definieren, wie Datenbanksysteme Transaktionen umgehen, und sorgen dafür, dass die Datenintegrität und -genauigkeit auch im Falle von Systemabstürzen, Leistungsunterbrechungen oder mehreren Benutzern gleichzeitiger Zugriff. Säureattributübersicht Atomizität: Eine Transaktion wird als unteilbare Einheit angesehen. Jeder Teil schlägt fehl, die gesamte Transaktion wird zurückgerollt und die Datenbank behält keine Änderungen bei. Wenn beispielsweise eine Banküberweisung von einem Konto abgezogen wird, jedoch nicht auf ein anderes erhöht wird, wird der gesamte Betrieb widerrufen. begintransaktion; updateAccountsSetBalance = Balance-100WH

Die Abfrageoptimierung in MySQL ist für die Verbesserung der Datenbankleistung von wesentlicher Bedeutung, insbesondere im Umgang mit großen Datensätzen Die Abfrageoptimierung in MySQL ist für die Verbesserung der Datenbankleistung von wesentlicher Bedeutung, insbesondere im Umgang mit großen Datensätzen Apr 08, 2025 pm 07:12 PM

1. Verwenden Sie den richtigen Index, um das Abrufen von Daten zu beschleunigen, indem die Menge der skanierten Datenmenge ausgewählt wird. Wenn Sie mehrmals eine Spalte einer Tabelle nachschlagen, erstellen Sie einen Index für diese Spalte. Wenn Sie oder Ihre App Daten aus mehreren Spalten gemäß den Kriterien benötigen, erstellen Sie einen zusammengesetzten Index 2. Vermeiden Sie aus. Auswählen * Nur die erforderlichen Spalten. Wenn Sie alle unerwünschten Spalten auswählen, konsumiert dies nur mehr Serverspeicher und veranlasst den Server bei hoher Last oder Frequenzzeiten, beispielsweise die Auswahl Ihrer Tabelle, wie beispielsweise die Spalten wie innovata und updated_at und Zeitsteuer und dann zu entfernen.

Kann ich das Datenbankkennwort in Navicat abrufen? Kann ich das Datenbankkennwort in Navicat abrufen? Apr 08, 2025 pm 09:51 PM

Navicat selbst speichert das Datenbankkennwort nicht und kann das verschlüsselte Passwort nur abrufen. Lösung: 1. Überprüfen Sie den Passwort -Manager. 2. Überprüfen Sie Navicats "Messnot Password" -Funktion; 3.. Setzen Sie das Datenbankkennwort zurück; 4. Kontaktieren Sie den Datenbankadministrator.

Master SQL Limit -Klausel: Steuern Sie die Anzahl der Zeilen in einer Abfrage Master SQL Limit -Klausel: Steuern Sie die Anzahl der Zeilen in einer Abfrage Apr 08, 2025 pm 07:00 PM

SQllimit -Klausel: Steuern Sie die Anzahl der Zeilen in Abfrageergebnissen. Die Grenzklausel in SQL wird verwendet, um die Anzahl der von der Abfrage zurückgegebenen Zeilen zu begrenzen. Dies ist sehr nützlich, wenn große Datensätze, paginierte Anzeigen und Testdaten verarbeitet werden und die Abfrageeffizienz effektiv verbessern können. Grundlegende Syntax der Syntax: SelectColumn1, Spalte2, ... Fromtable_Namelimitnumber_of_rows; number_of_rows: Geben Sie die Anzahl der zurückgegebenen Zeilen an. Syntax mit Offset: SelectColumn1, Spalte2, ... Fromtable_NamelimitOffset, Number_of_rows; Offset: Skip überspringen

See all articles