Heim Datenbank MySQL-Tutorial 浅谈SQL Server查询优化器中的JOIN算法

浅谈SQL Server查询优化器中的JOIN算法

Jun 07, 2016 pm 03:04 PM
join server sql 优化 查询 算法

查询优化器 都是支持 JOIN 操作的,而 SQL Server 中主要有以下三类JOIN算法:Nested Loop、Sort-Merge以及Hash Join。尽管每种算法都并不是很复杂,但考虑到性能优化,在产品级的优化器实现时往往使用的是改进过的变种算法。譬如 SQL Server 支持block nest

  查询优化器都是支持JOIN操作的,而SQL Server 中主要有以下三类JOIN算法:Nested Loop、Sort-Merge以及Hash Join。尽管每种算法都并不是很复杂,但考虑到性能优化,在产品级的优化器实现时往往使用的是改进过的变种算法。譬如SQL Server 支持block nested loops、index nexted loops、sort-merge、hash join以及hash team。我们在这里只对上述三种基本算法的原型做一个简单的介绍。

  【假设】有两张表R和S,R共占有M页,S共占有N页。r 和 s 分别代表元组,而 i 和 j 分别代表第i或者第 j 个字段,也就是后文提到的JOIN字段。

  1. Nested Loop Join(嵌套循环联结)

  算法:

  其思路相当的简单和直接:对于关系R的每个元组 r 将其与关系S的每个元组 s 在JOIN条件的字段上直接比较并筛选出符合条件的元组。写成伪代码就是:

  foreach tuple r Î R do
  foreach tuple s Î S do
  if ri == sj then add to result

  代价:

  被联结的表所处内层或外层的顺序对磁盘I/O开销有着非常重要的影响。而CPU开销相对来说影响较小,主要是元组读入内存以后(in-memory)的开销,是 O (n * m)

  对于I/O开销,根据 page-at-a-time 的前提条件,I/O cost = M + M * N,翻译一下就是 I/O的开销 = 读取M页的I/O开销 + M次读取N页的I/O开销。

  使用小结:

  • 适用于一个集合大而另一个集合小的情况(将小集合做为外循环),I/O性能不错。

  • 当外循环输入相当小而内循环非常大且有索引建立在JOIN字段上时,I/O性能相当不错。

  • 当两个集合中只有一个在JOIN字段上建立索引时,一定要将该集合作为内循环。

  • 对于一对一的匹配关系(两个具有唯一约束字段的联结),可以在找到匹配元组后跳过该次内循环的剩余部分(类似于编程语言循环语句中的continue)。

  2. Sort-Merge Join (排序合并联结)

  Nested Loop一般在两个集合都很大的情况下效率就相当差了,而Sort-Merge在这种情况下就比它要高效不少,尤其是当两个集合的JOIN字段上都有聚集索引(clustered index)存在时,Sort-Merge性能将达到最好。

  算法:

  基本思路也很简单(复习一下数据结构中的合并排序吧),主要有两个步骤:

  (1) 按JOIN字段进行排序

  (2) 对两组已排序集合进行合并排序,从来源端各自取得数据列后加以比较(需要根据是否在JOIN字段有重复值做特殊的“分区”处理)

  代价:(主要是I/O开销)

  有两个因素左右Sort-Merge的开销:JOIN字段是否已排序 以及 JOIN字段上的重复值有多少。

  • 最好情况下(两列都已排序且至少有一列没有重复值):O (n + m) 只需要对两个集合各扫描一遍

  • 最差情况下(两列都未排序且两列上的所有值都相同):O (n * log n + m * log m + n * m) 两次排序以及一次全部元组间的笛卡尔乘积

使用小结:

  如前所述,可以考虑在两个结果集都很大情况下使用,最好能有聚集索引保证已经排序完毕。而在实际应用中,我们经常会与遇到的主键-外键关系就是Sort-Merge的一个很好的应用。这种情况下,一般两列都会有聚集索引(已排序)而且一对多的关系保证了至少有一列没有重复值,这种情况下,Sort-Merge的性能是三种里面最好的。

  另外,如果要求查询的SQL语法本身就要求GROUP BY、ORDER BY、CUBE等运行,则查询语法整体本来就要做排序,因此可以重用排序结果,此时Merge也是不错的选择。

  3. Hash Join (哈希联结)

  Hash Join在本质上类似于两列都有重复值时的Sort-Merge的处理思想――分区(patitioning)。但它们也有区别:Hash Join通过哈希来分区(每一个桶就是一个分区)而Sort-Merge通过排序来分区(每一个重复值就是一个分区)。

  值得注意的是,Hash Join与上述两种算法之间的较大区别同时也是一个较大限制是它只能应用于等值联结(equality join),这主要是由于哈希函数及其桶的确定性及无序性所导致的。

  算法:

  基本的Hash Join算法由以下两步组成:

  (1) Build Input Phase: 基于JOIN字段,使用哈希函数h2为较小的S集合构建内存中(in-memory)的哈希表,相同键值的以linked list组成一个桶(bucket)

  (2) Probe Input Phase: 在较大的R集合上对哈希表进行核对以完成联结。其中核对操作包括:

  foreach tuple r Î R do
  hash on the joining attribute using the hash function of step 1 to find a bucket in the hash table
  if the bucket is nonempty
  foreach tuple s in the found bucket
  if ri == sj then add to result

  代价:

  值得注意的是对于大集合R的每个元组 r ,hash bucket中对应 r 的那个bucket中的每个元组都需要与 r 进行比较,这也是算法最耗时的地方所在。

  CPU开销是O (m + n * b) b是每个bucket的平均元组数量。

  使用小结:

  一般来说,查询优化器会首先考虑Nested Loop和Sort-Merge,但如果两个集合量都不小且没有合适的索引时,才会考虑使用Hash Join。

  Hash Join也用于许多集合比较操作,inner join、left/right/full outer join、intersect、difference等等,当然了,需要保证都是等值联结。

  另外,Hash Join的变种能够移除重复和进行分组,它只使用一个输入,兼做Build和Probe的角色。

   其实产品级的优化器一般都改进了这些基本算法,而改进过的版本的确有较大的性能提升。在这里只是给需要判断执行计划优劣或者研究查询优化器实现的兄弟提供原理方面的介绍,在实际应用中我们还得结合丰富的statistics作出准确的判断。


Tech?Ed 2007 微软技术大会

点击查看 Tech?Ed 2007 微软技术大会 专题

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Was ist der Unterschied zwischen HQL und SQL im Hibernate-Framework? Was ist der Unterschied zwischen HQL und SQL im Hibernate-Framework? Apr 17, 2024 pm 02:57 PM

HQL und SQL werden im Hibernate-Framework verglichen: HQL (1. Objektorientierte Syntax, 2. Datenbankunabhängige Abfragen, 3. Typsicherheit), während SQL die Datenbank direkt betreibt (1. Datenbankunabhängige Standards, 2. Komplexe ausführbare Datei). Abfragen und Datenmanipulation).

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Verbesserter Erkennungsalgorithmus: zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern Verbesserter Erkennungsalgorithmus: zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern Jun 06, 2024 pm 12:33 PM

01Ausblicksübersicht Derzeit ist es schwierig, ein angemessenes Gleichgewicht zwischen Detektionseffizienz und Detektionsergebnissen zu erreichen. Wir haben einen verbesserten YOLOv5-Algorithmus zur Zielerkennung in hochauflösenden optischen Fernerkundungsbildern entwickelt, der mehrschichtige Merkmalspyramiden, Multierkennungskopfstrategien und hybride Aufmerksamkeitsmodule verwendet, um die Wirkung des Zielerkennungsnetzwerks in optischen Fernerkundungsbildern zu verbessern. Laut SIMD-Datensatz ist der mAP des neuen Algorithmus 2,2 % besser als YOLOv5 und 8,48 % besser als YOLOX, wodurch ein besseres Gleichgewicht zwischen Erkennungsergebnissen und Geschwindigkeit erreicht wird. 02 Hintergrund und Motivation Mit der rasanten Entwicklung der Fernerkundungstechnologie wurden hochauflösende optische Fernerkundungsbilder verwendet, um viele Objekte auf der Erdoberfläche zu beschreiben, darunter Flugzeuge, Autos, Gebäude usw. Objekterkennung bei der Interpretation von Fernerkundungsbildern

C++-Programmoptimierung: Techniken zur Reduzierung der Zeitkomplexität C++-Programmoptimierung: Techniken zur Reduzierung der Zeitkomplexität Jun 01, 2024 am 11:19 AM

Die Zeitkomplexität misst die Ausführungszeit eines Algorithmus im Verhältnis zur Größe der Eingabe. Zu den Tipps zur Reduzierung der Zeitkomplexität von C++-Programmen gehören: Auswahl geeigneter Container (z. B. Vektor, Liste) zur Optimierung der Datenspeicherung und -verwaltung. Nutzen Sie effiziente Algorithmen wie die schnelle Sortierung, um die Rechenzeit zu verkürzen. Eliminieren Sie mehrere Vorgänge, um Doppelzählungen zu reduzieren. Verwenden Sie bedingte Verzweigungen, um unnötige Berechnungen zu vermeiden. Optimieren Sie die lineare Suche, indem Sie schnellere Algorithmen wie die binäre Suche verwenden.

Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform Anwendung von Algorithmen beim Aufbau einer 58-Porträt-Plattform May 09, 2024 am 09:01 AM

1. Hintergrund des Baus der 58-Portrait-Plattform Zunächst möchte ich Ihnen den Hintergrund des Baus der 58-Portrait-Plattform mitteilen. 1. Das traditionelle Denken der traditionellen Profiling-Plattform reicht nicht mehr aus. Der Aufbau einer Benutzer-Profiling-Plattform basiert auf Data-Warehouse-Modellierungsfunktionen, um Daten aus mehreren Geschäftsbereichen zu integrieren, um genaue Benutzerporträts zu erstellen Und schließlich muss es über Datenplattformfunktionen verfügen, um Benutzerprofildaten effizient zu speichern, abzufragen und zu teilen sowie Profildienste bereitzustellen. Der Hauptunterschied zwischen einer selbst erstellten Business-Profiling-Plattform und einer Middle-Office-Profiling-Plattform besteht darin, dass die selbst erstellte Profiling-Plattform einen einzelnen Geschäftsbereich bedient und bei Bedarf angepasst werden kann. Die Mid-Office-Plattform bedient mehrere Geschäftsbereiche und ist komplex Modellierung und bietet allgemeinere Funktionen. 2.58 Benutzerporträts vom Hintergrund der Porträtkonstruktion im Mittelbahnsteig 58

Nachrichtenempfehlungsalgorithmus basierend auf globaler Diagrammverbesserung Nachrichtenempfehlungsalgorithmus basierend auf globaler Diagrammverbesserung Apr 08, 2024 pm 09:16 PM

Autor |. Rezensiert von Wang Hao |. Die Chonglou News App ist eine wichtige Möglichkeit für Menschen, Informationsquellen in ihrem täglichen Leben zu erhalten. Zu den beliebten ausländischen Nachrichten-Apps gehörten um 2010 Zite und Flipboard, während es sich bei den beliebten inländischen Nachrichten-Apps hauptsächlich um die vier großen Portale handelte. Mit der Beliebtheit der von Toutiao vertretenen Nachrichtenempfehlungsprodukte der neuen Ära sind Nachrichten-Apps in eine neue Ära eingetreten. Was Technologieunternehmen angeht, egal um welches Unternehmen es sich handelt, solange sie die hochentwickelte Nachrichtenempfehlungsalgorithmus-Technologie beherrschen, werden sie grundsätzlich die Initiative und Mitsprache auf technischer Ebene haben. Werfen wir heute einen Blick auf einen Beitrag zum RecSys2023 Best Long Paper Nomination Award – GoingBeyondLocal:GlobalGraph-EnhancedP

Der bahnbrechende CVM-Algorithmus löst Zählprobleme aus über 40 Jahren! Informatiker wirft Münze, um einzigartiges Wort für „Hamlet' zu finden Der bahnbrechende CVM-Algorithmus löst Zählprobleme aus über 40 Jahren! Informatiker wirft Münze, um einzigartiges Wort für „Hamlet' zu finden Jun 07, 2024 pm 03:44 PM

Zählen klingt einfach, ist aber in der Praxis sehr schwierig. Stellen Sie sich vor, Sie werden in einen unberührten Regenwald transportiert, um eine Wildtierzählung durchzuführen. Wenn Sie ein Tier sehen, machen Sie ein Foto. Digitalkameras zeichnen nur die Gesamtzahl der verfolgten Tiere auf, Sie interessieren sich jedoch für die Anzahl der einzelnen Tiere, es gibt jedoch keine Statistiken. Wie erhält man also am besten Zugang zu dieser einzigartigen Tierpopulation? An diesem Punkt müssen Sie sagen: Beginnen Sie jetzt mit dem Zählen und vergleichen Sie schließlich jede neue Art vom Foto mit der Liste. Für Informationsmengen bis zu mehreren Milliarden Einträgen ist diese gängige Zählmethode jedoch teilweise nicht geeignet. Informatiker des Indian Statistical Institute (UNL) und der National University of Singapore haben einen neuen Algorithmus vorgeschlagen – CVM. Es kann die Berechnung verschiedener Elemente in einer langen Liste annähern.

Konzentrieren Sie sich darauf! ! Analyse zweier wichtiger Algorithmus-Frameworks für kausale Schlussfolgerungen Konzentrieren Sie sich darauf! ! Analyse zweier wichtiger Algorithmus-Frameworks für kausale Schlussfolgerungen Jun 04, 2024 pm 04:45 PM

1. Die Hauptaufgaben des Gesamtrahmens lassen sich in drei Kategorien einteilen. Die erste besteht darin, kausale Strukturen zu entdecken, also kausale Beziehungen zwischen Variablen aus den Daten zu identifizieren. Die zweite Möglichkeit besteht darin, kausale Effekte abzuschätzen, also aus den Daten den Grad des Einflusses einer Variablen auf eine andere Variable abzuleiten. Es ist zu beachten, dass sich dieser Einfluss nicht auf die relative Natur bezieht, sondern darauf, wie sich der Wert oder die Verteilung einer anderen Variablen ändert, wenn in eine Variable eingegriffen wird. Der letzte Schritt besteht darin, Verzerrungen zu korrigieren, da bei vielen Aufgaben verschiedene Faktoren dazu führen können, dass die Verteilung von Entwicklungsbeispielen und Anwendungsbeispielen unterschiedlich ist. In diesem Fall kann uns die kausale Schlussfolgerung dabei helfen, Verzerrungen zu korrigieren. Diese Funktionen eignen sich für eine Vielzahl von Szenarien. Das typischste davon sind Entscheidungsszenarien. Durch kausale Schlussfolgerungen können wir verstehen, wie verschiedene Benutzer auf unser Entscheidungsverhalten reagieren. Zweitens in der Industrie

See all articles