自己动手写CPU之第五阶段(2)OpenMIPS对数据相关问题的解决
将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第16篇,我尽量每周四篇 5.2OpenMIPS 对数据相关问题的解决措施 OpenMIPS 处理器采用数据前推的方法来解决流水线数据相关问题。通过补充完善图 4-4 原始的数据流图,添加部分信号使得可以完成数
将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第16篇,我尽量每周四篇
5.2 OpenMIPS对数据相关问题的解决措施
OpenMIPS处理器采用数据前推的方法来解决流水线数据相关问题。通过补充完善图4-4原始的数据流图,添加部分信号使得可以完成数据前推的工作,如图5-7所示。主要是将执行阶段的结果、访存阶段的结果前推到译码阶段,参与译码阶段选择运算源操作数的过程。

图5-8给出了为实现数据前推而对OpenMIPS系统结构所做的修改。有两个方面。
(1)将处于流水线执行阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段,如图5-8中虚线所示。
(2)将处于流水线访存阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段。

为此,译码阶段的ID模块要增加如表5-1所示的接口。
译码阶段的ID模块会依据送入的信息,进行综合判断,解决数据相关,给出最后要参与运算的操作数。ID模块的代码要做如下修改,其中主要修改部分使用加粗、斜体表示。修改后的代码位于本书光盘的Code\Chapter5_1目录下的id.v文件。
module id( ...... //处于执行阶段的指令的运算结果 input wire ex_wreg_i, input wire[`RegBus] ex_wdata_i, input wire[`RegAddrBus] ex_wd_i, //处于访存阶段的指令的运算结果 input wire mem_wreg_i, input wire[`RegBus] mem_wdata_i, input wire[`RegAddrBus] mem_wd_i, ...... //送到执行阶段的源操作数1、源操作数2 output reg[`RegBus] reg1_o, output reg[`RegBus] reg2_o, ...... ); ...... //给reg1_o赋值的过程增加了两种情况: //1、如果Regfile模块读端口1要读取的寄存器就是执行阶段要写的目的寄存器, // 那么直接把执行阶段的结果ex_wdata_i作为reg1_o的值; //2、如果Regfile模块读端口1要读取的寄存器就是访存阶段要写的目的寄存器, // 那么直接把访存阶段的结果mem_wdata_i作为reg1_o的值; always @ (*) begin if(rst == `RstEnable) begin reg1_o <br> <p> 除了修改译码阶段<span>ID</span><span>模块的代码,还要修改顶层模块</span><span>OpenMIPS</span><span>对应的代码,在其中增加图</span><span>5-8</span><span>所示的连接关系。具体修改过程不在书中列出,读者可以参考本书附带光盘的</span><span>Code\</span>Chapter5_1目录下的<span>openmips.v</span><span>文件。(代码会在稍后上传)</span></p> <h2>5.3 <span>测试数据相关问题解决效果</span> </h2> <p> 测试程序如下,其中存在<span>5.1</span><span>节讨论的</span><span>RAW</span><span>相关的三种情况,源文件是本书附带光盘</span><span>Code\</span>Chapter5_1\AsmTest<span>目录下的</span><span>inst_rom.S</span><span>文件。</span></p> <pre class="brush:php;toolbar:false">.org 0x0 .global _start .set noat _start: ori $1,$0,0x1100 # $1 = $0 | 0x1100 = 0x1100 ori $1,$1,0x0020 # $1 = $1 | 0x0020 = 0x1120 ori $1,$1,0x4400 # $1 = $1 | 0x4400 = 0x5520 ori $1,$1,0x0044 # $1 = $1 | 0x0044 = 0x5564
指令的注释给出了预期执行效果。将上述inst_rom.S文件,与第4章实现的Bin2Mem.exe、Makefile、ram.ld这三个文件拷贝到Ubuntu虚拟机中的同一个目录下,打开终端,使用cd命令进入该目录,然后输入make all,即可得到能够用于ModelSim仿真的inst_rom.data文件。
在ModelSim中新建一个工程,添加本书附带光盘Code\Chapter5_1目录下的所有.v文件,然后可以编译。再复制上面得到的inst_rom.data文件到ModelSim工程的目录下,就可以进行仿真了。ModelSim中新建工程、仿真的详细步骤可以参考第2章。
运行仿真,观察寄存器$1值的变化,如图5-9所示,$1的变化符合预期,所以修改后的OpenMIPS正确解决了数据相关问题。

下一步将实现逻辑、移位、空指令,敬请关注!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

1. Zuerst klicken wir mit der rechten Maustaste auf die leere Stelle der Taskleiste und wählen die Option [Task-Manager] oder klicken mit der rechten Maustaste auf das Startlogo und wählen dann die Option [Task-Manager]. 2. In der geöffneten Task-Manager-Oberfläche klicken wir ganz rechts auf die Registerkarte [Dienste]. 3. Klicken Sie in der geöffneten Registerkarte [Dienst] unten auf die Option [Dienst öffnen]. 4. Klicken Sie im sich öffnenden Fenster [Dienste] mit der rechten Maustaste auf den Dienst [InternetConnectionSharing(ICS)] und wählen Sie dann die Option [Eigenschaften]. 5. Ändern Sie im sich öffnenden Eigenschaftenfenster die Option „Öffnen mit“ in „Deaktiviert“, klicken Sie auf „Übernehmen“ und dann auf „OK“. 6. Klicken Sie auf das Startlogo, dann auf die Schaltfläche zum Herunterfahren, wählen Sie [Neustart] und schließen Sie den Neustart des Computers ab.

Laut Nachrichten dieser Website vom 28. Juli berichteten die ausländischen Medien TechRader, dass Fujitsu den FUJITSU-MONAKA-Prozessor (im Folgenden als MONAKA bezeichnet) detailliert vorgestellt habe, dessen Auslieferung im Jahr 2027 geplant sei. MONAKACPU basiert auf der „Cloud Native 3D Many-Core“-Architektur und übernimmt den Arm-Befehlssatz. Es ist auf die Bereiche Rechenzentrum, Edge und Telekommunikation ausgerichtet. Es ist für KI-Computing geeignet und kann RAS1 auf Mainframe-Ebene realisieren. Fujitsu sagte, dass MONAKA einen Sprung in puncto Energieeffizienz und Leistung machen wird: Dank Technologien wie der Ultra-Low-Voltage-Technologie (ULV) kann die CPU im Jahr 2027 die doppelte Energieeffizienz von Konkurrenzprodukten erreichen, und für die Kühlung ist keine Wasserkühlung erforderlich Darüber hinaus kann die Anwendungsleistung des Prozessors doppelt so hoch sein wie die Ihres Konkurrenten. In puncto Anleitung ist MONAKA mit Vector ausgestattet

Intel Arrow Lake wird voraussichtlich auf der gleichen Prozessorarchitektur wie Lunar Lake basieren, was bedeutet, dass Intels brandneue Lion Cove-Leistungskerne mit den wirtschaftlichen Skymont-Effizienzkernen kombiniert werden. Während Lunar Lake nur als Ava verfügbar ist

Laut Nachrichten dieser Website vom 1. Juni hat die Quelle @CodeCommando heute getwittert und einige Screenshots der bevorstehenden Präsentationsdokumente von AMD auf der Computex2024-Veranstaltung geteilt. Der Inhalt des Tweets war „AM4 wird niemals sterben“, und das dazugehörige Bild zeigte zwei neue Prozessoren der Ryzen5000XT-Serie. Den Screenshots zufolge sind die folgenden zwei Produkte zu sehen: Ryzen95900XTR Ryzen95900XT ist relativ hochpreisig positioniert. Dabei handelt es sich um einen neuen 16-Kern-AM4-Prozessor mit einer Taktrate, die etwas niedriger ist als die von AMDs Ryzen95950X. Ryzen75800XT Es handelt sich um eine schnellere Variante des bestehenden Ryzen75800X-Prozessors. Beide Prozessoren sind mit bis zu 4,8 G getaktet

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.
