Inhaltsverzeichnis
比较direct方式使用并行和非并行选项的性能差异。
并行测试
非并行测试
分析
多文件并行测试
多文件非并行测试
总结
Heim Datenbank MySQL-Tutorial 实例演示使用并行和非并行选项的性能差异

实例演示使用并行和非并行选项的性能差异

Jun 07, 2016 pm 03:29 PM
direct 使用 实例 差异 parallel 性能 比较 演示 选项

比较direct方式使用并行和非并行选项的性能差异。 并行测试 创建测试表 create table sqlldr_paral nologging PARTITION BY HASH (sfzh) (partition p1 tablespace users , partition p2tablespace zdry_tbs2 ) AS SELECT *FROM sfxx2 where 1=2 ; sqlldr_pa

比较direct方式使用并行和非并行选项的性能差异。

并行测试

创建测试表

create table sqlldr_paral

nologging

PARTITION BY HASH (sfzh)

(partition p1 tablespace users , partition p2tablespace zdry_tbs2 )

AS SELECT *FROM sfxx2 where 1=2 ;

sqlldr_paral.ctl

LOAD DATA

INFILE 'd:\flatfile\flatfile.dat'

APPEND

INTO TABLE sqlldr_paral

fields terminated by X'23'

TRAILING NULLCOLS

(zj,

…字段太多省略

cjdwdm)

sqlldr_paral.par

USERID=zdrygk/zdrygk

CONTROL='d:\flatfile\sqlldr_paral.ctl'

DATA='d:\flatfile\flatfile.dat'

LOG='d:\flatfile\sqlldr_paral.log'

DIRECT=true

parallel=true

ERRORS=10000

执行

D:\flatfile>sqlldrparfile=d:\flatfile\sqlldr_paral.par

SQL*Loader: Release 11.2.0.1.0 - Production onMon Jan 7 23:21:42 2013

Copyright (c) 1982, 2009, Oracle and/or itsaffiliates. All rights reserved.

Load completed - logical record count 3022375.

sqlldr_paral.log

Control File: d:\flatfile\sqlldr_paral.ctl

Data File: d:\flatfile\flatfile.dat

BadFile: d:\flatfile\flatfile.bad

DiscardFile: none specified

(Allowall discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 10000

Continuation: none specified

Path used: Direct- with parallel option. -----这里指定了并行选项

Table SQLLDR_PARAL, loaded from every logicalrecord.

Insert option in effect for this table: APPEND

TRAILING NULLCOLS option in effect

Table SQLLDR_PARAL:

3017264Rows successfully loaded.

5111Rows not loaded due to data errors.

0 Rows not loaded because all WHEN clauseswere failed.

0 Rowsnot loaded because all fields were null.

Dateconversion cache disabled due to overflow (default size: 1000)

Partition P1: 1509091 Rows loaded.

Partition P2: 1508173 Rows loaded.

Bind array size not used in direct path.

Column array rows : 5000

Stream buffer bytes: 256000

Read buffer bytes: 1048576

Total logical records skipped: 0

Total logical records read: 3022375

Total logical records rejected: 5111

Total logical records discarded: 0

Total stream buffers loaded by SQL*Loader mainthread: 1301

Total stream buffers loaded by SQL*Loader loadthread: 3901

Run began on Mon Jan 07 23:21:42 2013

Run ended on Mon Jan 07 23:22:18 2013

Elapsed time was: 00:00:35.91

CPU time was: 00:00:25.79

非并行测试

创建测试表

create table sqlldr_nopal

nologging

PARTITION BY HASH (sfzh)

(partition p1 tablespace users , partition p2tablespace zdry_tbs2 )

AS SELECT *FROM sfxx2 where 1=2 ;

sqlldr_nopar.ctl

LOAD DATA

INFILE 'd:\flatfile\flatfile.dat'

APPEND

INTO TABLEsqlldr_nopar

fields terminated by X'23'

TRAILING NULLCOLS

(zj,

…字段太多省略

cjdwdm)

sqlldr_nopar.par

这里删除了并行选项

USERID=zdrygk/zdrygk

CONTROL='d:\flatfile\sqlldr_nopar.ctl'

DATA='d:\flatfile\flatfile.dat'

LOG='d:\flatfile\sqlldr_nopar.log'

DIRECT=true

ERRORS=10000

执行

D:\flatfile>sqlldrparfile=d:\flatfile\sqlldr_nopar.par

SQL*Loader: Release 11.2.0.1.0 - Production onMon Jan 7 23:20:54 2013

Copyright (c) 1982, 2009, Oracle and/or itsaffiliates. All rights reserved.

Load completed - logical record count 3022375.

sqlldr_nopar.log

Control File: d:\flatfile\sqlldr_nopar.ctl

Data File: d:\flatfile\flatfile.dat

BadFile: d:\flatfile\flatfile.bad

DiscardFile: none specified

(Allowall discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 10000

Continuation: none specified

Path used: Direct ----这里只是指定了直接路径加载

Table SQLLDR_NOPAR, loaded from every logicalrecord.

Insert option in effect for this table: APPEND

TRAILING NULLCOLS option in effect

Table SQLLDR_NOPAR:

3017264Rows successfully loaded.

5111Rows not loaded due to data errors.

0 Rows not loaded because all WHEN clauseswere failed.

0 Rowsnot loaded because all fields were null.

Dateconversion cache disabled due to overflow (default size: 1000)

Partition P1: 1509091 Rows loaded.

Partition P2: 1508173 Rows loaded.

Bind array size not used in direct path.

Column array rows : 5000

Stream buffer bytes: 256000

Read buffer bytes: 1048576

Total logical records skipped: 0

Total logical records read: 3022375

Total logical records rejected: 5111

Total logical records discarded: 0

Total stream buffers loaded by SQL*Loader mainthread: 1301

Total stream buffers loaded by SQL*Loader loadthread: 3901

Run began on Mon Jan 07 23:20:54 2013

Run ended on Mon Jan 07 23:21:28 2013

Elapsed time was: 00:00:33.81

CPU time was: 00:00:25.32

分析

Load Mode

Elapsed time(ss.99)

Direct

33.81

Direct + parallel

35.91

笔者做了多次试验,除了第一次消耗时间较长(因为表空间自动拓展),后面的实验中两种模式的用时大致相同。自己猜测在使用Direct 直接路径加载的情况下,多线程并不能提高效率。

在Util中找到关于sql*loader command line的描述

PARALLEL(parallel load)

Default: false

PARALLELspecifies whether direct loads canoperate in multiple concurrent sessions

to load data into the same table.

parallel这个参数用来设定使用direct loads的时候是否使用并发的session去加载数据到相同的表中。

于是测试了多文件,多session加载数据的情况。

D:\flatfile>sqluldr2 user=zdrygk/zdrygk@orclquery=sfxx2 degree=8 file=d:\flatfile\ldrfiles%t.dat field=0x23 size=300MB

0rows exported at 2013-01-08 00:07:26, size 0 MB.

output file d:\flatfile\ldrfiles1357574846.dat closed at 707972 rows,size 304 MB.

output file d:\flatfile\ldrfiles1357574861.dat closed at 697498 rows,size 604 MB.

output file d:\flatfile\ldrfiles1357574876.dat closed at 701379 rows,size 904 MB.

output file d:\flatfile\ldrfiles1357574891.dat closed at 692556 rows,size 1204 MB.

222868rows exported at 2013-01-08 00:08:31, size 1300 MB.

output file d:\flatfile\ldrfiles1357574906.dat closed at 222868 rows,size 1300 MB.

一共5个文件。

多文件并行测试

如果指定了parallel选项,sqlldr运行的时候会对表加4级锁,允许多个sqlldr session同时对同一个表执行加载作用。在我们执行了truncate 操作后对表进行并行加载操作。

parallelpar1文件

USERID=zdrygk/zdrygk

CONTROL='D:\flatfile\multifile\paral\sqlldr_paral_1.ctl'

DATA='D:\flatfile\multifile\ldrfiles1357574846.dat'

LOG='D:\flatfile\multifile\paral\sqlldr_paral_1.log'

DIRECT=true

parallel=true

ERRORS=10000

parallel par2、3、4、5的内容大致相同。

在windows下只能打开多个窗口,通过复制粘贴的方法保证并行了。

执行

sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_1.par

sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_2.par

sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_3.par

sqlldr parfile=D:\flatfile\multifile\paral\sqlldr_paral_4.par

sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_5.par

最后得到了5个log文件关键内容:

log1

Run began on Tue Jan 08 01:51:11 2013

Run ended on Tue Jan 08 01:51:21 2013

Elapsed time was: 00:00:09.42

CPU time was: 00:00:06.43

中间的几个log文件省略

log5

Run began on Tue Jan 08 01:51:34 2013

Run ended on Tue Jan 08 01:51:38 2013

Elapsed time was: 00:00:03.27

CPU time was: 00:00:02.03

因为最后一个sqlldr session 是最后一个执行结束的,所以需要计算并行sqlldr的执行消耗时间,只需要使用log5中的结束时间减去log1中的开始时间即可。

01:51:38-01:51:11=22秒

因为不是使用程序执行这几个sqlldr程序,复制、粘贴、执行之间会有空隙。真实用时应该比22秒这个数字要小的多。

多文件非并行测试

因为如果没有指定parallel选项,sqlldr运行的时候会对表加6级锁,其他sqlldr session会无法工作,所以只能串行的执行sqlldr操作。在我们执行了truncate操作之后对表进行串行加载操作。

noparallelpar1文件

USERID=zdrygk/zdrygk

CONTROL='D:\flatfile\multifile\nopar\sqlldr_nopar_1.ctl'

DATA='D:\flatfile\multifile\ldrfiles1357574846.dat'

LOG='D:\flatfile\multifile\nopar\sqlldr_nopar_1.log'

DIRECT=true

ERRORS=10000

noparallel par2、3、4、5的内容大致相同。

执行

sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_1.par

sqlldr parfile=D:\flatfile\multifile\nopar\sqlldr_nopar_2.par

sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_3.par

sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_4.par

sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_5.par

最后得到了5个log文件关键内容:

log1

Run began on Tue Jan 08 01:47:35 2013

Run ended on Tue Jan 08 01:47:48 2013

Elapsed time was: 00:00:12.61

CPU time was: 00:00:06.92

中间的几个log文件省略

log5

Run began on Tue Jan 08 01:48:26 2013

Run ended on Tue Jan 08 01:48:30 2013

Elapsed time was: 00:00:03.68

CPU time was: 00:00:02.01

最后执行时间相加

12.61+ 12.54+ 12.09+ 11.40+ 03.68=52.32秒

总结

Load Mode

Elapsed time(ss.99)

Direct

52.32

Direct + parallel

22

sqlldr是cpu密集型的操作,并且多线程,只有在使用多个数据文件,并且开启多个sqlldr session的时候才会有效果。并且效果非常明显。在消耗更多cpu和内存的同时能够给予非常高的效率,在真实情况下与单文件加载相比效率相差有1倍以上。

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1668
14
PHP-Tutorial
1273
29
C#-Tutorial
1256
24
BTCC-Tutorial: Wie kann ich die MetaMask-Wallet an der BTCC-Börse binden und verwenden? BTCC-Tutorial: Wie kann ich die MetaMask-Wallet an der BTCC-Börse binden und verwenden? Apr 26, 2024 am 09:40 AM

MetaMask (auf Chinesisch auch Little Fox Wallet genannt) ist eine kostenlose und beliebte Verschlüsselungs-Wallet-Software. Derzeit unterstützt BTCC die Bindung an die MetaMask-Wallet. Nach der Bindung können Sie sich mit der MetaMask-Wallet schnell anmelden, Werte speichern, Münzen kaufen usw. und bei der erstmaligen Bindung einen Testbonus von 20 USDT erhalten. Im BTCCMetaMask-Wallet-Tutorial stellen wir detailliert vor, wie man MetaMask registriert und verwendet und wie man das Little Fox-Wallet in BTCC bindet und verwendet. Was ist die MetaMask-Wallet? Mit über 30 Millionen Nutzern ist MetaMask Little Fox Wallet heute eines der beliebtesten Kryptowährungs-Wallets. Die Nutzung ist kostenlos und kann als Erweiterung im Netzwerk installiert werden

So verwenden Sie die Xiaomi Auto-App So verwenden Sie die Xiaomi Auto-App Apr 01, 2024 pm 09:19 PM

Die Xiaomi-Autosoftware bietet Funktionen zur Fernsteuerung des Fahrzeugs, mit denen Benutzer das Fahrzeug über Mobiltelefone oder Computer fernsteuern können, z. B. das Öffnen und Schließen der Türen und Fenster des Fahrzeugs, das Starten des Motors, die Steuerung der Klimaanlage und des Audios des Fahrzeugs usw. Folgendes ist Lassen Sie uns gemeinsam mehr über die Verwendung und den Inhalt dieser Software erfahren. Umfassende Liste der Funktionen und Nutzungsmethoden der Xiaomi Auto-App. 1. Die Xiaomi Auto-App wurde am 25. März im Apple AppStore gestartet und kann jetzt im App Store auf Android-Telefonen heruntergeladen werden: Erfahren Sie mehr über die wichtigsten Highlights und technischen Parameter von Xiaomi Auto und vereinbaren Sie einen Termin für eine Probefahrt. Konfigurieren und bestellen Sie Ihr Xiaomi-Auto und unterstützen Sie die Online-Abwicklung von Aufgaben zur Autoabholung. 3. Community: Informationen zur Marke Xiaomi Auto verstehen, Autoerfahrungen austauschen und das wundervolle Autoleben teilen: Das Mobiltelefon ist die Fernbedienung, Fernbedienung, Echtzeitsicherheit, einfach

Die lokale Ausführungsleistung des Embedding-Dienstes übertrifft die von OpenAI Text-Embedding-Ada-002, was sehr praktisch ist! Die lokale Ausführungsleistung des Embedding-Dienstes übertrifft die von OpenAI Text-Embedding-Ada-002, was sehr praktisch ist! Apr 15, 2024 am 09:01 AM

Ollama ist ein superpraktisches Tool, mit dem Sie Open-Source-Modelle wie Llama2, Mistral und Gemma problemlos lokal ausführen können. In diesem Artikel werde ich vorstellen, wie man Ollama zum Vektorisieren von Text verwendet. Wenn Sie Ollama nicht lokal installiert haben, können Sie diesen Artikel lesen. In diesem Artikel verwenden wir das Modell nomic-embed-text[2]. Es handelt sich um einen Text-Encoder, der OpenAI text-embedding-ada-002 und text-embedding-3-small bei kurzen und langen Kontextaufgaben übertrifft. Starten Sie den nomic-embed-text-Dienst, wenn Sie o erfolgreich installiert haben

PHP-Array-Schlüsselwertumdrehen: Vergleichende Leistungsanalyse verschiedener Methoden PHP-Array-Schlüsselwertumdrehen: Vergleichende Leistungsanalyse verschiedener Methoden May 03, 2024 pm 09:03 PM

Der Leistungsvergleich der PHP-Methoden zum Umdrehen von Array-Schlüsselwerten zeigt, dass die Funktion array_flip() in großen Arrays (mehr als 1 Million Elemente) eine bessere Leistung als die for-Schleife erbringt und weniger Zeit benötigt. Die for-Schleifenmethode zum manuellen Umdrehen von Schlüsselwerten dauert relativ lange.

Leistungsvergleich verschiedener Java-Frameworks Leistungsvergleich verschiedener Java-Frameworks Jun 05, 2024 pm 07:14 PM

Leistungsvergleich verschiedener Java-Frameworks: REST-API-Anforderungsverarbeitung: Vert.x ist am besten, mit einer Anforderungsrate von 2-mal SpringBoot und 3-mal Dropwizard. Datenbankabfrage: HibernateORM von SpringBoot ist besser als ORM von Vert.x und Dropwizard. Caching-Vorgänge: Der Hazelcast-Client von Vert.x ist den Caching-Mechanismen von SpringBoot und Dropwizard überlegen. Geeignetes Framework: Wählen Sie entsprechend den Anwendungsanforderungen. Vert.x eignet sich für leistungsstarke Webdienste, SpringBoot eignet sich für datenintensive Anwendungen und Dropwizard eignet sich für Microservice-Architekturen.

So verwenden Sie Leerzeichen in Go richtig So verwenden Sie Leerzeichen in Go richtig Mar 29, 2024 pm 03:42 PM

Die Go-Sprache ist eine einfache, effiziente und hochgradig parallele Programmiersprache. Es handelt sich um eine von Google entwickelte Open-Source-Sprache. In der Go-Sprache ist die Verwendung von Leerzeichen sehr wichtig, da sie die Lesbarkeit und Wartbarkeit des Codes verbessern kann. In diesem Artikel wird erläutert, wie Leerzeichen in der Go-Sprache korrekt verwendet werden, und es werden spezifische Codebeispiele bereitgestellt. Warum Sie Leerzeichen richtig verwenden müssen Im Programmierprozess ist die Verwendung von Leerzeichen für die Lesbarkeit und Schönheit des Codes sehr wichtig. Durch die richtige Verwendung von Leerzeichen kann der Code klarer und leichter lesbar gemacht und somit reduziert werden

Welchen Einfluss haben C++-Funktionen auf die Programmleistung? Welchen Einfluss haben C++-Funktionen auf die Programmleistung? Apr 12, 2024 am 09:39 AM

Die Auswirkungen von Funktionen auf die Leistung von C++-Programmen umfassen den Overhead für Funktionsaufrufe sowie den Overhead für die Zuweisung lokaler Variablen und Objekte: Overhead für Funktionsaufrufe: einschließlich Stapelrahmenzuweisung, Parameterübertragung und Steuerungsübertragung, was erhebliche Auswirkungen auf kleine Funktionen hat. Overhead bei der Zuordnung lokaler Variablen und Objekte: Die Erstellung und Zerstörung einer großen Anzahl lokaler Variablen oder Objekte kann zu einem Stapelüberlauf und Leistungseinbußen führen.

Wie kann die Leistung von Multithread-Programmen in C++ optimiert werden? Wie kann die Leistung von Multithread-Programmen in C++ optimiert werden? Jun 05, 2024 pm 02:04 PM

Zu den wirksamen Techniken zur Optimierung der C++-Multithread-Leistung gehört die Begrenzung der Anzahl der Threads, um Ressourcenkonflikte zu vermeiden. Verwenden Sie leichte Mutex-Sperren, um Konflikte zu reduzieren. Optimieren Sie den Umfang der Sperre und minimieren Sie die Wartezeit. Verwenden Sie sperrenfreie Datenstrukturen, um die Parallelität zu verbessern. Vermeiden Sie geschäftiges Warten und benachrichtigen Sie Threads über Ereignisse über die Ressourcenverfügbarkeit.

See all articles