1,创建一个user表,包含两列name,phone 2,用python(你喜欢的任何语言)插入100W条记录(lz的笔记本比较老,大概用了1分钟吧): #!/usr/bin/env python# -*- coding:utf-8 -*-import MySQLdbconn = MySQLdb.connect(host='localhost',user='root',db='milli
1,创建一个user表,包含两列name,phone
2,用python(你喜欢的任何语言)插入100W条记录(lz的笔记本比较老,大概用了1分钟吧):
<span>#!/usr/bin/env python # -*- coding:utf-8 -*- import MySQLdb conn = MySQLdb.connect(host='localhost',user='root',db='millionMessage') cur = conn.cursor() for i in range(1,1000000): uname = "user" + str(i) uphone = "188000" + str(i) sql = "insert into user(name,phone) values('%s','%s')" % (uname,uphone) cur.execute(sql) conn.commit() cur.close() conn.close() </span>
mysql> select * from user where name='user55555';
+-------+-----------+-------------+
| uid | name | phone |
+-------+-----------+-------------+
| 55567 | user55555 | 18800055555 |
+-------+-----------+-------------+
1 row in set (0.53 sec)
mysql> select phone from user where name='user55555';
+-------------+
| phone |
+-------------+
| 18800055555 |
+-------------+
1 row in set (0.46 sec)
4,对name属性建立索引:
mysql> alter table user add index index_username(name);
Query OK, 0 rows affected (22.27 sec)
Records: 0 Duplicates: 0 Warnings: 0
5, 查询:
mysql> select * from user where name='user55555';
+-------+-----------+-------------+
| uid | name | phone |
+-------+-----------+-------------+
| 55567 | user55555 | 18800055555 |
+-------+-----------+-------------+
1 row in set (0.00 sec)
结果秒出。可见在海量数据的数据库上,索引对搜索性能的提升是非常大的。