图(2)

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Freigeben: 2016-06-07 15:42:38
Original
1449 Leute haben es durchsucht

一:图的遍历 1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的 连通性问题 、 拓扑排序 和求 关键路径 等算法的基

一:图的遍历

      1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的连通性问题拓扑排序和求关键路径等算法的基础。)

       2.深度优先搜索(DFS)

            1).基本思想:

                           (1)在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;
                           (2)再从 w1 出发,访问与 w1邻接但还未被访问过的顶点 w2;
                           (3)然后再从 w2 出发,进行类似的访问,… 
                           (4)如此进行下去,直至到达所有的邻接顶点都被访问过为止。
                           (5)接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。
                                     如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;
                                     如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

            2)算法实现(明显是要用到(栈)递归):                           

Void DFSTraverse( Graph  G, Status (*Visit) (int v))
{         // 对图G做深度优先遍历
    for (v=0; v<g.vexnum visited false for v if dfs void g>//从第v个顶点出发递归地深度优先遍历图G
{
   visited[v]=TRUE ;  Visit(v);  //访问第v个顶点 
   for(w=FirstAdjVex(G,v)/*从图的第v个结点开始*/; w>=0; w=NextAdjVex(G,v,w)/*v结点开始的w结点的下一个结点*/)
       if (!visited[w])   DFS(G,w); 
      //对v的尚未访问的邻接顶点w递归调用DFS 
}
</g.vexnum>
Nach dem Login kopieren

           3)DFS时间复杂度分析:

                     (1)如果用邻接矩阵来表示图,遍历图中每一个顶点都要从头扫描该顶点所在行,因此遍历全部顶点所需的时间为O(n2)。
                     (2)如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫描 e 个结点即可完成遍历,加上访问 n 个头结点的时间,因此遍历图的时间复杂度为O(n+e)。

3.广度优先搜索(BFS)

     1).基本思想:

               (1)从图中某个顶点V0出发,并在访问此顶点后依次访问V0的所有未被访问过的邻接点,之后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有和V0                                     有 路径相通的顶点都被访问到;
                (2)若此时图中尚有顶点未被访问(非连通图),则另选图中一个未曾被访问的顶点作起始点;
                (3)重复上述过程,直至图中所有顶点都被访问到为止。

     2).算法实现(明显是要用到队列)              

void BFSTraverse(Graph G, Status (*Visit)(int v)){
            //使用辅助队列Q和访问标志数组visited[v] 
  for (v=0; v<g.vexnum visited false initqueue for v="0;" if true visit enqueue while dequeue u>=0;w=NextAdjVex(G,u,w))
          if ( ! visited[w]){  
           //w为u的尚未访问的邻接顶点
             visited[w] = TRUE; Visit(w);
             EnQueue(Q, w);
          }   //if
       }   //while
   }if
}  // BFSTraverse</g.vexnum>
Nach dem Login kopieren
      3).BFS时间复杂度分析:

               (1) 如果使用邻接表来表示图,则BFS循环的总时间代价为 d0 + d1 + … + dn-1 = 2e=O(e),其中的 di 是顶点 i 的度
               (2)如果使用邻接矩阵,则BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行( n 个元素),总的时间代价为O(n2)。


二.图的连通性问题:

     1. 相关术语:

                 (1)连通分量的顶点集:即从该连通分量的某一顶点出发进行搜索所得到的顶点访问序列;
                 (2)生成树:某连通分量的极小连通子图(深度优先搜索生成树广度优先搜索生成树);
                 (3)生成森林:非连通图的各个连通分量的极小连通子图构成的集合。

     2.最小生成树:

             1).Kruskal算法:

                      先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中去,并使森林中不产生回路,直至森林变成一棵树为止(详细代码见尾文)。

                      图(2)


                 2)Prim算法(还是看上图理解):

                          假设原来所有节点集合为V,生成的最小生成树的结点集合为U,则首先把起始点V1加入到U中,然后看比较V1的所有相邻边,选择一条最小的V3结点加入到集合U中,

                      然后看剩下的v-U结点与U中结点的距离,同样选择最小的.........一直进行下去直到边数=n-1即可。

                    图(2)

                   算法设计思路:

                          增设一辅助数组Closedge[ n ],每个数组分量都有两个域:

                          图(2)

                         要求:求最小的Colsedge[ i ].lowcost   

                        图(2)

           3.两种算法比较:

                      (1)普里姆算法的时间复杂度为 O(n2),与网中的边数无关,适于稠密图;
                      (2)克鲁斯卡尔算法需对 e 条边按权值进行排序,其时间复杂度为 O(eloge),e为网中的边数,适于稀疏图。                  

           4.完整最小生成树两种算法实现:          

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std; 

#define MAX_VERTEX_NUM 20

#define OK 1

#define ERROR 0

#define MAX 1000

typedef struct Arcell
{
	double adj;//顶点类型
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef struct
{
	char vexs[MAX_VERTEX_NUM]; //节点数组,
	AdjMatrix arcs; //邻接矩阵
	int vexnum,arcnum; //图的当前节点数和弧数
}MGraph;

typedef struct Pnode //用于普利姆算法
{

	char adjvex; //节点

	double lowcost; //权值

}Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义

typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点

{

	char ch1; //节点1

	char ch2; //节点2

	double value;//权值

}Knode,Dgevalue[MAX_VERTEX_NUM];

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue);

int LocateVex(MGraph G,char ch);

int Minimum(MGraph G,Closedge closedge);

void MiniSpanTree_PRIM(MGraph G,char u);

void Sortdge(Dgevalue & dgevalue,MGraph G);

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵
{
	int i,j,k;
	cout>G.vexnum>>G.arcnum;

	cout>G.vexs[i];

	for(i=0;i<g.vexnum for g.arcs cout cin>> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value;

		i = LocateVex(G,dgevalue[k].ch1);

		j = LocateVex(G,dgevalue[k].ch2);

		G.arcs[i][j].adj = dgevalue[k].value;

		G.arcs[j][i].adj = G.arcs[i][j].adj;

	}

	return OK;

}

int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置

{

	int a ;

	for(int i=0; i<g.vexnum i if ch a="i;" return void minispantree_prim g u int closedge k="LocateVex(G,u);" for j g.arcs cout g.vexs minimum double minispantree_krsl dgevalue p1 bj sortdge p2="bj[LocateVex(G,dgevalue[i].ch2)];" temp char ch1> dgevalue[j].value)

			{

				temp = dgevalue[i].value;

				dgevalue[i].value = dgevalue[j].value;

				dgevalue[j].value = temp;

				ch1 = dgevalue[i].ch1;

				dgevalue[i].ch1 = dgevalue[j].ch1;

				dgevalue[j].ch1 = ch1;

				ch2 = dgevalue[i].ch2;

				dgevalue[i].ch2 = dgevalue[j].ch2;

				dgevalue[j].ch2 = ch2;

			}

		}

	}

}

void main()

{

	int i,j;

	MGraph G;

	char u;

	Dgevalue dgevalue;

	CreateUDG(G,dgevalue);

	cout>u;

	cout运行结果:

<p>             <img  src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140219123300296%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvd3VzdF9fd2FuZ2Zhbg%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fwust__wangfan%2Farticle%2Fdetails%2F19479007" alt="图(2)" ></p>


</g.vexnum></g.vexnum></iostream></stdlib.h></stdio.h>
Nach dem Login kopieren
Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage