图(2)

Jun 07, 2016 pm 03:42 PM
Losfahren 概念 遍历 顶点

一:图的遍历 1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的 连通性问题 、 拓扑排序 和求 关键路径 等算法的基

一:图的遍历

      1.概念: 从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次(图的遍历算法是求解图的连通性问题拓扑排序和求关键路径等算法的基础。)

       2.深度优先搜索(DFS)

            1).基本思想:

                           (1)在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;
                           (2)再从 w1 出发,访问与 w1邻接但还未被访问过的顶点 w2;
                           (3)然后再从 w2 出发,进行类似的访问,… 
                           (4)如此进行下去,直至到达所有的邻接顶点都被访问过为止。
                           (5)接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。
                                     如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;
                                     如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。

            2)算法实现(明显是要用到(栈)递归):                           

Void DFSTraverse( Graph  G, Status (*Visit) (int v))
{         // 对图G做深度优先遍历
    for (v=0; v<g.vexnum visited false for v if dfs void g>//从第v个顶点出发递归地深度优先遍历图G
{
   visited[v]=TRUE ;  Visit(v);  //访问第v个顶点 
   for(w=FirstAdjVex(G,v)/*从图的第v个结点开始*/; w>=0; w=NextAdjVex(G,v,w)/*v结点开始的w结点的下一个结点*/)
       if (!visited[w])   DFS(G,w); 
      //对v的尚未访问的邻接顶点w递归调用DFS 
}
</g.vexnum>
Nach dem Login kopieren

           3)DFS时间复杂度分析:

                     (1)如果用邻接矩阵来表示图,遍历图中每一个顶点都要从头扫描该顶点所在行,因此遍历全部顶点所需的时间为O(n2)。
                     (2)如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫描 e 个结点即可完成遍历,加上访问 n 个头结点的时间,因此遍历图的时间复杂度为O(n+e)。

3.广度优先搜索(BFS)

     1).基本思想:

               (1)从图中某个顶点V0出发,并在访问此顶点后依次访问V0的所有未被访问过的邻接点,之后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有和V0                                     有 路径相通的顶点都被访问到;
                (2)若此时图中尚有顶点未被访问(非连通图),则另选图中一个未曾被访问的顶点作起始点;
                (3)重复上述过程,直至图中所有顶点都被访问到为止。

     2).算法实现(明显是要用到队列)              

void BFSTraverse(Graph G, Status (*Visit)(int v)){
            //使用辅助队列Q和访问标志数组visited[v] 
  for (v=0; v<g.vexnum visited false initqueue for v="0;" if true visit enqueue while dequeue u>=0;w=NextAdjVex(G,u,w))
          if ( ! visited[w]){  
           //w为u的尚未访问的邻接顶点
             visited[w] = TRUE; Visit(w);
             EnQueue(Q, w);
          }   //if
       }   //while
   }if
}  // BFSTraverse</g.vexnum>
Nach dem Login kopieren
      3).BFS时间复杂度分析:

               (1) 如果使用邻接表来表示图,则BFS循环的总时间代价为 d0 + d1 + … + dn-1 = 2e=O(e),其中的 di 是顶点 i 的度
               (2)如果使用邻接矩阵,则BFS对于每一个被访问到的顶点,都要循环检测矩阵中的整整一行( n 个元素),总的时间代价为O(n2)。


二.图的连通性问题:

     1. 相关术语:

                 (1)连通分量的顶点集:即从该连通分量的某一顶点出发进行搜索所得到的顶点访问序列;
                 (2)生成树:某连通分量的极小连通子图(深度优先搜索生成树广度优先搜索生成树);
                 (3)生成森林:非连通图的各个连通分量的极小连通子图构成的集合。

     2.最小生成树:

             1).Kruskal算法:

                      先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中去,并使森林中不产生回路,直至森林变成一棵树为止(详细代码见尾文)。

                      图(2)


                 2)Prim算法(还是看上图理解):

                          假设原来所有节点集合为V,生成的最小生成树的结点集合为U,则首先把起始点V1加入到U中,然后看比较V1的所有相邻边,选择一条最小的V3结点加入到集合U中,

                      然后看剩下的v-U结点与U中结点的距离,同样选择最小的.........一直进行下去直到边数=n-1即可。

                    图(2)

                   算法设计思路:

                          增设一辅助数组Closedge[ n ],每个数组分量都有两个域:

                          图(2)

                         要求:求最小的Colsedge[ i ].lowcost   

                        图(2)

           3.两种算法比较:

                      (1)普里姆算法的时间复杂度为 O(n2),与网中的边数无关,适于稠密图;
                      (2)克鲁斯卡尔算法需对 e 条边按权值进行排序,其时间复杂度为 O(eloge),e为网中的边数,适于稀疏图。                  

           4.完整最小生成树两种算法实现:          

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
using namespace std; 

#define MAX_VERTEX_NUM 20

#define OK 1

#define ERROR 0

#define MAX 1000

typedef struct Arcell
{
	double adj;//顶点类型
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef struct
{
	char vexs[MAX_VERTEX_NUM]; //节点数组,
	AdjMatrix arcs; //邻接矩阵
	int vexnum,arcnum; //图的当前节点数和弧数
}MGraph;

typedef struct Pnode //用于普利姆算法
{

	char adjvex; //节点

	double lowcost; //权值

}Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义

typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点

{

	char ch1; //节点1

	char ch2; //节点2

	double value;//权值

}Knode,Dgevalue[MAX_VERTEX_NUM];

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue);

int LocateVex(MGraph G,char ch);

int Minimum(MGraph G,Closedge closedge);

void MiniSpanTree_PRIM(MGraph G,char u);

void Sortdge(Dgevalue & dgevalue,MGraph G);

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵
{
	int i,j,k;
	cout>G.vexnum>>G.arcnum;

	cout>G.vexs[i];

	for(i=0;i<g.vexnum for g.arcs cout cin>> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value;

		i = LocateVex(G,dgevalue[k].ch1);

		j = LocateVex(G,dgevalue[k].ch2);

		G.arcs[i][j].adj = dgevalue[k].value;

		G.arcs[j][i].adj = G.arcs[i][j].adj;

	}

	return OK;

}

int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置

{

	int a ;

	for(int i=0; i<g.vexnum i if ch a="i;" return void minispantree_prim g u int closedge k="LocateVex(G,u);" for j g.arcs cout g.vexs minimum double minispantree_krsl dgevalue p1 bj sortdge p2="bj[LocateVex(G,dgevalue[i].ch2)];" temp char ch1> dgevalue[j].value)

			{

				temp = dgevalue[i].value;

				dgevalue[i].value = dgevalue[j].value;

				dgevalue[j].value = temp;

				ch1 = dgevalue[i].ch1;

				dgevalue[i].ch1 = dgevalue[j].ch1;

				dgevalue[j].ch1 = ch1;

				ch2 = dgevalue[i].ch2;

				dgevalue[i].ch2 = dgevalue[j].ch2;

				dgevalue[j].ch2 = ch2;

			}

		}

	}

}

void main()

{

	int i,j;

	MGraph G;

	char u;

	Dgevalue dgevalue;

	CreateUDG(G,dgevalue);

	cout>u;

	cout运行结果:

<p>             <img  src="/static/imghw/default1.png" data-src="/inc/test.jsp?url=http%3A%2F%2Fimg.blog.csdn.net%2F20140219123300296%3Fwatermark%2F2%2Ftext%2FaHR0cDovL2Jsb2cuY3Nkbi5uZXQvd3VzdF9fd2FuZ2Zhbg%3D%3D%2Ffont%2F5a6L5L2T%2Ffontsize%2F400%2Ffill%2FI0JBQkFCMA%3D%3D%2Fdissolve%2F70%2Fgravity%2FSouthEast&refer=http%3A%2F%2Fblog.csdn.net%2Fwust__wangfan%2Farticle%2Fdetails%2F19479007" class="lazy" alt="图(2)" ></p>


</g.vexnum></g.vexnum></iostream></stdlib.h></stdio.h>
Nach dem Login kopieren
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Was bedeutet das Metaverse-Konzept? Was ist das Metaverse-Konzept? Was bedeutet das Metaverse-Konzept? Was ist das Metaverse-Konzept? Feb 22, 2024 pm 03:55 PM

Das Metaverse ist eine Scheinwelt, die Technologie nutzt, um die reale Welt abzubilden und mit ihr zu interagieren. Analyse 1 Metaverse [Metaverse] ist eine Scheinwelt, die technologische Methoden zur Verknüpfung und Erstellung voll ausnutzt und die reale Welt abbildet und mit ihr interagiert. Es ist ein Datenlebensraum mit dem neuesten sozialen Entwicklungssystem. Das zweidimensionale Universum ist im Wesentlichen eine virtuelle Technologie und ein digitaler Prozess der realen Welt, der eine umfassende Transformation der Inhaltsproduktion, des Wirtschaftssystems, des Kundenerlebnisses und der Inhalte der physischen Welt erfordert. 3 Der Entwicklungstrend des Metaversums verläuft jedoch schrittweise. Es entsteht schließlich durch die kontinuierliche Kombination und Weiterentwicklung vieler Tools und Plattformen mit der Unterstützung gemeinsamer Infrastruktur, Standards und Protokolle. Ergänzung: Woraus besteht das Metaversum? 1 Das Metaversum besteht aus Meta und Vers, Meta ist Transzendenz und V

Java, wie man einen Ordner durchläuft und alle Dateinamen abruft Java, wie man einen Ordner durchläuft und alle Dateinamen abruft Mar 29, 2024 pm 01:24 PM

Java ist eine beliebte Programmiersprache mit leistungsstarken Funktionen zur Dateiverarbeitung. In Java ist das Durchsuchen eines Ordners und das Abrufen aller Dateinamen ein üblicher Vorgang, der uns dabei helfen kann, Dateien in einem bestimmten Verzeichnis schnell zu finden und zu verarbeiten. In diesem Artikel wird erläutert, wie eine Methode zum Durchlaufen eines Ordners und zum Abrufen aller Dateinamen in Java implementiert wird, und es werden spezifische Codebeispiele bereitgestellt. 1. Verwenden Sie die rekursive Methode, um den Ordner zu durchlaufen. Die rekursive Methode ist eine Möglichkeit, sich selbst aufzurufen und den Ordner effektiv zu durchlaufen.

Erfahren Sie mehr über die Grundlagen und Funktionen von Gunicorn Erfahren Sie mehr über die Grundlagen und Funktionen von Gunicorn Jan 03, 2024 am 08:41 AM

Grundlegende Konzepte und Funktionen von Gunicorn Gunicorn ist ein Tool zum Ausführen von WSGI-Servern in Python-Webanwendungen. WSGI (Web Server Gateway Interface) ist eine von der Python-Sprache definierte Spezifikation und wird zur Definition der Kommunikationsschnittstelle zwischen Webservern und Webanwendungen verwendet. Gunicorn ermöglicht die Bereitstellung und Ausführung von Python-Webanwendungen in Produktionsumgebungen durch Implementierung der WSGI-Spezifikation. Die Funktion von Gunicorn ist es

Schreiben Sie ein Java-Programm, um die Fläche und den Umfang eines Rechtecks ​​mithilfe des Klassenkonzepts zu berechnen Schreiben Sie ein Java-Programm, um die Fläche und den Umfang eines Rechtecks ​​mithilfe des Klassenkonzepts zu berechnen Sep 03, 2023 am 11:37 AM

Die Java-Sprache ist heute eine der am häufigsten verwendeten objektorientierten Programmiersprachen der Welt. Das Konzept der Klassen ist eines der wichtigsten Merkmale objektorientierter Sprachen. Eine Klasse ist wie eine Blaupause für ein Objekt. Wenn wir zum Beispiel ein Haus bauen wollen, erstellen wir zunächst einen Bauplan des Hauses, also einen Plan, der zeigt, wie wir das Haus bauen werden. Nach diesem Plan können wir viele Häuser bauen. Ebenso können wir mithilfe von Klassen viele Objekte erstellen. Klassen sind Blaupausen für die Erstellung vieler Objekte, wobei Objekte reale Einheiten wie Autos, Fahrräder, Stifte usw. sind. Eine Klasse hat die Eigenschaften aller Objekte und die Objekte haben die Werte dieser Eigenschaften. In diesem Artikel schreiben wir ein Java-Programm, um den Umfang und die Flächen eines Rechtecks ​​mithilfe des Klassenkonzepts zu ermitteln

Beherrschen Sie die Schlüsselkonzepte von Spring MVC: Verstehen Sie diese wichtigen Funktionen Beherrschen Sie die Schlüsselkonzepte von Spring MVC: Verstehen Sie diese wichtigen Funktionen Dec 29, 2023 am 09:14 AM

Verstehen Sie die Hauptfunktionen von SpringMVC: Um diese wichtigen Konzepte zu beherrschen, sind spezifische Codebeispiele erforderlich. SpringMVC ist ein Java-basiertes Framework für die Entwicklung von Webanwendungen, das Entwicklern beim Aufbau flexibler und skalierbarer Strukturen durch das Architekturmuster Model-View-Controller (MVC) hilft. Internetanwendung. Wenn wir die wichtigsten Funktionen von SpringMVC verstehen und beherrschen, können wir unsere Webanwendungen effizienter entwickeln und verwalten. In diesem Artikel werden einige wichtige Konzepte von SpringMVC vorgestellt

Einführung und Kernkonzepte von Oracle RAC Einführung und Kernkonzepte von Oracle RAC Mar 07, 2024 am 11:39 AM

Einführung und Kernkonzepte von OracleRAC (RealApplicationClusters) Da die Menge an Unternehmensdaten weiter wächst und die Nachfrage nach Hochverfügbarkeit und hoher Leistung immer wichtiger wird, wird die Datenbank-Cluster-Technologie immer wichtiger. OracleRAC (RealApplicationClusters) soll dieses Problem lösen. OracleRAC ist eine von Oracle eingeführte hochverfügbare und leistungsstarke Cluster-Datenbanklösung.

Beispiel für die Verwendung der PHP-glob()-Funktion: Alle Dateien in einem angegebenen Ordner durchsuchen Beispiel für die Verwendung der PHP-glob()-Funktion: Alle Dateien in einem angegebenen Ordner durchsuchen Jun 27, 2023 am 09:16 AM

Beispiel für die Verwendung der PHPglob()-Funktion: Alle Dateien in einem bestimmten Ordner durchsuchen Bei der PHP-Entwicklung ist es häufig erforderlich, alle Dateien in einem bestimmten Ordner zu durchsuchen, um einen Stapelvorgang oder das Lesen von Dateien zu implementieren. Um diese Anforderung zu erfüllen, wird die glob()-Funktion von PHP verwendet. Die Funktion glob() kann die Pfadinformationen aller Dateien im angegebenen Ordner abrufen, die die Bedingungen erfüllen, indem sie ein Platzhalter-Übereinstimmungsmuster angibt. In diesem Artikel zeigen wir, wie Sie mit der Funktion glob() alle Dateien in einem bestimmten Ordner durchlaufen

C/C++-Programm zum Ermitteln des Scheitelpunkts, des Fokus und der Leitlinie einer Parabel C/C++-Programm zum Ermitteln des Scheitelpunkts, des Fokus und der Leitlinie einer Parabel Sep 05, 2023 pm 05:21 PM

Eine Menge von Punkten auf einer ebenen Oberfläche, die eine Kurve bilden, sodass jeder Punkt auf dieser Kurve gleich weit von einem Punkt in der Mitte (Fokus genannt) entfernt ist, ist eine Parabel. Die allgemeine Gleichung für die Parabel ist = ax2 + bx + c

See all articles