Inhaltsverzeichnis
5台服务器设计图
--  配置Linux、安装JDK
-- Step 1. 建立用户hadoop的ssh无密码登陆
-- Step 3. Hadoop集群配置:
-- Step 3.1 vi $HADOOP_HOME/etc/hadoop/slaves
-- Step 3.2 vi $HADOOP_HOME/etc/hadoop/hadoop-env.sh  (添加 JAVA_HOME 环境变量、本地library库)
-- Step 3.3 vi $HADOOP_HOME/etc/hadoop/core-site.xml
-- Step 3.4 vi $HADOOP_HOME/etc/hadoop/hdfs-site.xml
-- Step 3.5 vi $HADOOP_HOME/etc/hadoop/mapred-site.xml
-- Step 3.6 vi $HADOOP_HOME/etc/hadoop/yarn-site.xml
-- Step 3.7 vi $HADOOP_HOME/etc/hadoop/fairscheduler.xml
-- Step 4. 创建相关目录
-- Step 5. 启动Zookeeper、JournalNode、格式化Hadoop集群并启动
-- Step 5.1 启动Zooker (ZK集群是funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198 五台服务器)
-- Step 5.2 启动JournalNode进程(在funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198五台服务器上分别执行):
-- Step 5.3 格式化Hadoop集群并启动:
-- Step 6. 上传测试数据:
-- Step 7. Hive安装(安装到196机器) (使用Hive与HBase整合安装;使用源码编译安装)
-- Step 7.1 My SQL安装(安装到194机器),并在My SQL中创建名为hive的数据库用以存放hive元数据:
-- Step 7.2 解决hive安装包到/usr/local下,添加hive相关环境变量:
-- Step 7.3 在My SQL数据库的hive数据库中执行创建hive元数据脚本:
-- Step 7.4 修改hive相关配置文件:
-- 7.4.1 修改 $HIVE_HOME/bin/hive-config.sh 文件,添加如下环境变量:
-- 7.4.2 修改 $HIVE_HOME/conf/hive-site.xml 的第2002行:
-- 7.4.3 修改 $HIVE_HOME/conf/hive-site.xml 的如下property:
-- Step 7.5 启动并登录hive,并创建hive表
Heim Datenbank MySQL-Tutorial hadoop2.4.0 ha 搭建

hadoop2.4.0 ha 搭建

Jun 07, 2016 pm 03:43 PM
hadoop 搭建 passieren 问题

问题导读: 1、hadoop ha是通过什么配置实现自动切换的? 2、配置中mapred与mapreduce的区别是什么? 3、hadoop ha两个namenode之间的关系是什么? -- hadoop 版本:2.4.0 -- 安装包名: hadoop-2.4.0.tar.gz 或者源码版本 hadoop-2.4.0-src.tar.gz(我hadoop

问题导读:
1、hadoop ha是通过什么配置实现自动切换的?
2、配置中mapred与mapreduce的区别是什么?
3、hadoop ha两个namenode之间的关系是什么?

-- hadoop 版本:2.4.0
-- 安装包名: 
             hadoop-2.4.0.tar.gz 或者源码版本 hadoop-2.4.0-src.tar.gz(我hadoop、hbase、hive均是用的源码编译安装)

-- 安装参考:
http://www.netfoucs.com/article/book_mmicky/79985.html
http://www.byywee.com/page/M0/S934/934356.html
http://www.itpub.net/thread-1631536-1-1.html
http://demo.netfoucs.com/u014393917/article/details/25913363
http://www.aboutyun.com/thread-8294-1-1.html

-- 找不到本地库
           参考:http://www.ercoppa.org/Linux-Com ... -hadoop-library.htm

-- lzo支持,
参考:http://blog.csdn.net/zhangzhaokun/article/details/17595325
http://slaytanic.blog.51cto.com/2057708/1162287/
http://hi.baidu.com/qingchunranzhi/item/3662ed5ed29d37a1adc85709


-- 安装以下RPM包:
yum -y install openssh*
yum -y install man*
yum -y install compat-libstdc++-33*
yum -y install libaio-0.*
yum -y install libaio-devel*
yum -y install sysstat-9.*
yum -y install glibc-2.*
yum -y install glibc-devel-2.* glibc-headers-2.*
yum -y install ksh-2*
yum -y install libgcc-4.*
yum -y install libstdc++-4.*
yum -y install libstdc++-4.*.i686*
yum -y install libstdc++-devel-4.*
yum -y install gcc-4.*x86_64*
yum -y install gcc-c++-4.*x86_64*
yum -y install elfutils-libelf-0*x86_64* elfutils-libelf-devel-0*x86_64*
yum -y install elfutils-libelf-0*i686* elfutils-libelf-devel-0*i686*
yum -y install libtool-ltdl*i686*
yum -y install ncurses*i686*
yum -y install ncurses*
yum -y install readline*
yum -y install unixODBC*
yum -y install zlib
yum -y install zlib*
yum -y install openssl*
yum -y install patch
yum -y install git
yum -y -y install  lzo-devel zlib-devel gcc autoconf automake libtool
yum -y install lzop
yum -y install lrzsz
yum -y -y install  lzo-devel  zlib-devel  gcc autoconf automake libtool
yum -y install nc
yum -y install glibc
yum -y install java-1.7.0-openjdk
yum -y install gzip
yum -y install zlib
yum -y install gcc
yum -y install gcc-c++
yum -y install make
yum -y install protobuf
yum -y install protoc
yum -y install cmake
yum -y install openssl-devel
yum -y install ncurses-devel
yum -y install unzip
yum -y install telnet
yum -y install telnet-server
yum -y install wget
yum -y install svn
yum -y install ntpdate

-- hive 安装,参考:http://kicklinux.com/hive-deploy/

5台服务器设计图

IP地址 主机名 NameNode JournalNode DataNode Zookeeper Hbase Hive
192.168.117.194 funshion-hadoop194
192.168.117.195 funshion-hadoop195
192.168.117.196 funshion-hadoop196 是(Master) 是(Mysql)
192.168.117.197 funshion-hadoop197
192.168.117.198 funshion-hadoop198


--  配置Linux、安装JDK

--参考:linux(ubuntu)安装Java jdk环境变量设置及小程序测试

-- Step 1. 建立用户hadoop的ssh无密码登陆

--参考:
linux(ubuntu)无密码互通、相互登录高可靠文档
CentOS6.4之图解SSH无验证双向登陆配置

-- Step 2. zookeeper配置(配置奇数台zk集群,我用的5台)
-- 参考:Zookeeper集群环境安装过程详解

-- Step 3. Hadoop集群配置:


-- Step 3.1 vi $HADOOP_HOME/etc/hadoop/slaves

funshion-hadoop196
funshion-hadoop197
funshion-hadoop198

-- Step 3.2 vi $HADOOP_HOME/etc/hadoop/hadoop-env.sh  (添加 JAVA_HOME 环境变量、本地library库)

export JAVA_HOME=/usr/java/latest
export LD_LIBRARY_PATH=/usr/local/hadoop/lzo/lib
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX}/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_PREFIX/lib/native"

-- 注意:${HADOOP_PREFIX}/lib/native 下的内容如下:
[hadoop@funshion-hadoop194 native]$ pwd
/usr/local/hadoop/lib/native

[hadoop@funshion-hadoop194 native]$ ls -l
total 8640
-rw-r--r--. 1 hadoop hadoop 2850660 Jun  9 14:58 hadoop-common-2.4.0.jar
-rw-r--r--. 1 hadoop hadoop 1509888 Jun  9 14:58 hadoop-common-2.4.0-tests.jar
-rw-r--r--. 1 hadoop hadoop  178637 Jun  9 14:58 hadoop-lzo-0.4.20-SNAPSHOT.jar
-rw-r--r--. 1 hadoop hadoop  145385 Jun  9 14:58 hadoop-nfs-2.4.0.jar
-rw-r--r--. 1 hadoop hadoop  983042 Jun  6 19:36 libhadoop.a
-rw-r--r--. 1 hadoop hadoop 1487284 Jun  6 19:36 libhadooppipes.a
lrwxrwxrwx. 1 hadoop hadoop      18 Jun  6 19:42 libhadoop.so -> libhadoop.so.1.0.0
-rwxr-xr-x. 1 hadoop hadoop  586664 Jun  6 19:36 libhadoop.so.1.0.0
-rw-r--r--. 1 hadoop hadoop  582040 Jun  6 19:36 libhadooputils.a
-rw-r--r--. 1 hadoop hadoop  298178 Jun  6 19:36 libhdfs.a
lrwxrwxrwx. 1 hadoop hadoop      16 Jun  6 19:42 libhdfs.so -> libhdfs.so.0.0.0
-rwxr-xr-x. 1 hadoop hadoop  200026 Jun  6 19:36 libhdfs.so.0.0.0
drwxrwxr-x. 2 hadoop hadoop    4096 Jun  6 20:37 Linux-amd64-64

-- Step 3.3 vi $HADOOP_HOME/etc/hadoop/core-site.xml

--(注意:fs.default.FS参数在两个namenode节点均一样,即5台机器的core-site.xml文件内容完全一样)



fs.defaultFS
hdfs://mycluster


dfs.ha.fencing.methods
sshfence


dfs.ha.fencing.ssh.private-key-files
/home/hadoop/.ssh/id_rsa_nn2


ha.zookeeper.quorum
funshion-hadoop194:2181,funshion-hadoop195:2181,funshion-hadoop196:2181,funshion-hadoop197:2181,funshion-hadoop198:2181




io.compression.codecs
org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec,org.apache.hadoop.io.compress.BZip2Codec


io.compression.codec.lzo.class
com.hadoop.compression.lzo.LzoCodec


io.file.buffer.size
131072


hadoop.tmp.dir
/home/hadoop/tmp
Abase for other temporary directories.


hadoop.proxyuser.hadoop.hosts
*


hadoop.proxyuser.hadoop.groups
*


hadoop.native.lib
true


ha.zookeeper.session-timeout.ms
60000
ms


ha.failover-controller.cli-check.rpc-timeout.ms
60000


ipc.client.connect.timeout
20000




-- 注意:属性值dfs.ha.fencing.ssh.private-key-files的值id_rsa_nn2 是privatekey(即/home/hadoop/.ssh/目录id_rsa文件的拷贝,且权限为600)
       
                dfs.ha.fencing.ssh.private-key-files
                /home/hadoop/.ssh/id_rsa_nn2
       


-- Step 3.4 vi $HADOOP_HOME/etc/hadoop/hdfs-site.xml




dfs.nameservices
mycluster


dfs.ha.namenodes.mycluster
nn1,nn2


dfs.namenode.rpc-address.mycluster.nn1
funshion-hadoop194:8020


dfs.namenode.rpc-address.mycluster.nn2
funshion-hadoop195:8020


dfs.namenode.servicerpc-address.mycluster.nn1
funshion-hadoop194:53310

:q
dfs.namenode.servicerpc-address.mycluster.nn2
funshion-hadoop195:53310


dfs.namenode.http-address.mycluster.nn1
funshion-hadoop194:50070


dfs.namenode.http-address.mycluster.nn2
funshion-hadoop195:50070


dfs.namenode.shared.edits.dir
qjournal://funshion-hadoop194:8485;funshion-hadoop195:8485;funshion-hadoop196:8485;funshion-hadoop197:8485;funshion-hadoop198:8485/mycluster


dfs.journalnode.edits.dir
/home/hadoop/mydata/journal


dfs.client.failover.proxy.provider.mycluster
org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider


dfs.ha.automatic-failover.enabled
true




dfs.namenode.name.dir
file:///home/hadoop/mydata/name


dfs.datanode.data.dir
file:///home/hadoop/mydata/data


dfs.replication
2


dfs.image.transfer.bandwidthPerSec
1048576



-- Step 3.5 vi $HADOOP_HOME/etc/hadoop/mapred-site.xml



mapreduce.jobhistory.address
funshion-hadoop194:10020


mapreduce.jobhistory.webapp.address
funshion-hadoop194:19888


mapreduce.map.output.compress
true


mapreduce.map.output.compress.codec
com.hadoop.compression.lzo.LzoCodec


mapred.child.env
LD_LIBRARY_PATH=/usr/local/hadoop/lib/native


mapred.child.java.opts
-Xmx2048m


mapred.reduce.child.java.opts
-Xmx2048m


mapred.map.child.java.opts
-Xmx2048m


mapred.remote.os
Linux
Remote MapReduce framework's OS, can be either Linux or Windows




-- 注意:1、以mapred.开头的形式去指定属性名,都是一种过时的形式,建议使用mapreduce.
            比如:mapred.compress.map.output 属性应该对应修改成:mapreduce.map.output.compress
            具体可以查阅:http://hadoop.apache.org/docs/r2 ... /mapred-default.xml 文件,
      当然,好像还有少量属性名是没有修改的,比如:mapred.child.java.opts、mapred.child.env

-- 注意:/usr/local/hadoop/lib/native 目录下有如下内容:
[hadoop@funshion-hadoop194 sbin]$ ls -l /usr/local/hadoop/lib/native
total 12732
-rw-r--r-- 1 hadoop hadoop 2850900 Jun 20 19:22 hadoop-common-2.4.0.jar
-rw-r--r-- 1 hadoop hadoop 1509411 Jun 20 19:22 hadoop-common-2.4.0-tests.jar
-rw-r--r-- 1 hadoop hadoop  178559 Jun 20 18:38 hadoop-lzo-0.4.20-SNAPSHOT.jar
-rw-r--r-- 1 hadoop hadoop 1407039 Jun 20 19:25 hadoop-yarn-common-2.4.0.jar
-rw-r--r-- 1 hadoop hadoop  106198 Jun 20 18:37 libgplcompression.a
-rw-r--r-- 1 hadoop hadoop    1124 Jun 20 18:37 libgplcompression.la
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so.0
-rwxr-xr-x 1 hadoop hadoop   69347 Jun 20 18:37 libgplcompression.so.0.0.0
-rw-r--r-- 1 hadoop hadoop  983042 Jun 20 18:10 libhadoop.a
-rw-r--r-- 1 hadoop hadoop 1487284 Jun 20 18:10 libhadooppipes.a
lrwxrwxrwx 1 hadoop hadoop      18 Jun 20 18:27 libhadoop.so -> libhadoop.so.1.0.0
-rwxr-xr-x 1 hadoop hadoop  586664 Jun 20 18:10 libhadoop.so.1.0.0
-rw-r--r-- 1 hadoop hadoop  582040 Jun 20 18:10 libhadooputils.a
-rw-r--r-- 1 hadoop hadoop  298178 Jun 20 18:10 libhdfs.a
lrwxrwxrwx 1 hadoop hadoop      16 Jun 20 18:27 libhdfs.so -> libhdfs.so.0.0.0
-rwxr-xr-x 1 hadoop hadoop  200026 Jun 20 18:10 libhdfs.so.0.0.0
-rw-r--r-- 1 hadoop hadoop  906318 Jun 20 19:17 liblzo2.a
-rwxr-xr-x 1 hadoop hadoop     929 Jun 20 19:17 liblzo2.la
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so.2
-rwxr-xr-x 1 hadoop hadoop  562376 Jun 20 19:17 liblzo2.so.2.0.0

-- Step 3.6 vi $HADOOP_HOME/etc/hadoop/yarn-site.xml




yarn.resourcemanager.connect.retry-interval.ms
60000


yarn.resourcemanager.ha.enabled
true


yarn.resourcemanager.cluster-id
rm-cluster


yarn.resourcemanager.ha.rm-ids
rm1,rm2


yarn.resourcemanager.ha.id
rm1


yarn.resourcemanager.hostname.rm1
funshion-hadoop194


yarn.resourcemanager.hostname.rm2
funshion-hadoop195


yarn.resourcemanager.recovery.enabled
true


yarn.resourcemanager.store.class
org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore


yarn.resourcemanager.zk-address
funshion-hadoop194:2181,funshion-hadoop195:2181,funshion-hadoop196:2181,funshion-hadoop197:2181,funshion-hadoop198:2181


yarn.resourcemanager.address.rm1
${yarn.resourcemanager.hostname.rm1}:23140


yarn.resourcemanager.scheduler.address.rm1
${yarn.resourcemanager.hostname.rm1}:23130


yarn.resourcemanager.webapp.https.address.rm1
${yarn.resourcemanager.hostname.rm1}:23189


yarn.resourcemanager.webapp.address.rm1
${yarn.resourcemanager.hostname.rm1}:23188


yarn.resourcemanager.resource-tracker.address.rm1
${yarn.resourcemanager.hostname.rm1}:23125


yarn.resourcemanager.admin.address.rm1
${yarn.resourcemanager.hostname.rm1}:23141




yarn.resourcemanager.address.rm2
${yarn.resourcemanager.hostname.rm2}:23140


yarn.resourcemanager.scheduler.address.rm2
${yarn.resourcemanager.hostname.rm2}:23130


yarn.resourcemanager.webapp.https.address.rm2
${yarn.resourcemanager.hostname.rm2}:23189


yarn.resourcemanager.webapp.address.rm2
${yarn.resourcemanager.hostname.rm2}:23188


yarn.resourcemanager.resource-tracker.address.rm2
${yarn.resourcemanager.hostname.rm2}:23125


yarn.resourcemanager.admin.address.rm2
${yarn.resourcemanager.hostname.rm2}:23141




yarn.resourcemanager.scheduler.class
org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler


yarn.scheduler.fair.allocation.file
${yarn.home.dir}/etc/hadoop/fairscheduler.xml


yarn.nodemanager.local-dirs
/home/hadoop/logs/yarn_local


yarn.nodemanager.log-dirs
/home/hadoop/logs/yarn_log


yarn.nodemanager.remote-app-log-dir
/home/hadoop/logs/yarn_remotelog


yarn.app.mapreduce.am.staging-dir
/home/hadoop/logs/yarn_userstag


mapreduce.jobhistory.intermediate-done-dir
/home/hadoop/logs/yarn_intermediatedone


mapreduce.jobhistory.done-dir
/var/lib/hadoop/dfs/yarn_done




yarn.log-aggregation-enable
true


yarn.nodemanager.resource.memory-mb
2048


yarn.nodemanager.vmem-pmem-ratio
4.2


yarn.nodemanager.resource.cpu-vcores
2


yarn.nodemanager.aux-services
mapreduce_shuffle


yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler


Classpath for typical applications.
yarn.application.classpath

$HADOOP_HOME/etc/hadoop,
$HADOOP_HOME/share/hadoop/common/*,
$HADOOP_HOME/share/hadoop/common/lib/*,
$HADOOP_HOME/share/hadoop/hdfs/*,
$HADOOP_HOME/share/hadoop/hdfs/lib/*,
$HADOOP_HOME/share/hadoop/mapreduce/*,
$HADOOP_HOME/share/hadoop/mapreduce/lib/*,
$HADOOP_HOME/share/hadoop/yarn/*,
$HADOOP_HOME/share/hadoop/yarn/lib/*





-- 注意:两个namenode,funshion-hadoop194直接用上面的配置,
--       funshion-hadoop195的话,只需修改一个地方:修改yarn.resourcemanager.ha.id 属性值为 rm2 

-- Step 3.7 vi $HADOOP_HOME/etc/hadoop/fairscheduler.xml





1024 mb, 1 vcores
1536 mb, 1 vcores
5
300
1.0
root,yarn,search,hdfs


1024 mb, 1 vcores
1536 mb, 1 vcores


1024 mb, 1 vcores
1536 mb, 1 vcores



################################################################################## 

scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop195:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop196:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop197:/usr/local/hadoop/etc/hadoop/
scp -r /usr/local/hadoop/etc/hadoop/* hadoop@funshion-hadoop198:/usr/local/hadoop/etc/hadoop/

-- Step 4. 创建相关目录


mkdir ~/logs
mkdir ~/mydata

-- 备注:mydate目录下的相关子目录会自动生成,不需要创建。
-- 在每台集群机器上创建如上两个目录,并同步 $HADOOP_HOME/etc/hadoop目录下的所有文件到各节点


-- Step 5. 启动Zookeeper、JournalNode、格式化Hadoop集群并启动



-- Step 5.1 启动Zooker (ZK集群是funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198 五台服务器)


[hadoop@funshion-hadoop194 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop195 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop196 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop197 bin]$ /usr/local/zookeeper/bin/zkServer.sh start
[hadoop@funshion-hadoop198 bin]$ /usr/local/zookeeper/bin/zkServer.sh start

-- 可以如下查看Zookeeper集群各节点的状态:
/usr/local/zookeeper/bin/zkServer.sh status


-- 然后在某一个namenode节点执行如下命令,创建命名空间
[hadoop@funshion-hadoop194 bin]$ cd $HADOOP_HOME
[hadoop@funshion-hadoop194 hadoop]$ ./bin/hdfs zkfc -formatZK

-- 备注:停止zookeeper相关命令类似如下:
/usr/local/zookeeper/bin/zkServer.sh stop
/usr/local/zookeeper/bin/zkServer.sh restart

-- Step 5.2 启动JournalNode进程(在funshion-hadoop194、funshion-hadoop195、funshion-hadoop196、funshion-hadoop197、funshion-hadoop198五台服务器上分别执行):


[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop196 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop197 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode
[hadoop@funshion-hadoop198 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start journalnode


-- Step 5.3 格式化Hadoop集群并启动:


-- 在 funshion-hadoop194 上执行:
[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/bin/hdfs namenode -format mycluster
[hadoop@funshion-hadoop194 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode

-- 上步执行完后,在 funshion-hadoop195 上执行:
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs namenode -bootstrapStandby
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode

-- 上步执行完后,可以继续在某个 namenode 执行 $HADOOP_HOME/sbin/start-all.sh 启动datanode及yarn相关进程。

-- 因为是配置的自动故障转移,所以不能手工切换namenode的active和stadby角色。

-- 可以通过haadmin查看每个Service的角色状态:
[hadoop@funshion-hadoop194 lab]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
standby
[hadoop@funshion-hadoop194 lab]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn2
active
[hadoop@funshion-hadoop194 lab]$


-- 通过hdfs-site.xml中的如下配置,我们知道nn1是在 funshion-hadoop194上的namenode服务,nn2是funshion-hadoop195上的namenode服务

dfs.namenode.rpc-address.mycluster.nn1
funshion-hadoop194:8020


dfs.namenode.rpc-address.mycluster.nn2
funshion-hadoop195:8020


-- 所以,我们可以尝试 kill 掉 nn2(状态为active的namenode进程,然后去查看nn1的角色是否改变:
[hadoop@funshion-hadoop195 bin]$ jps
3199 JournalNode
3001 NameNode
1161 QuorumPeerMain
3364 DFSZKFailoverController
4367 Jps

[hadoop@funshion-hadoop195 bin]$ kill -9 3001
[hadoop@funshion-hadoop195 bin]$ jps
3199 JournalNode
1161 QuorumPeerMain
3364 DFSZKFailoverController
4381 Jps


[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
active
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-funshion-hadoop195.out
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn1
active
[hadoop@funshion-hadoop195 bin]$ $HADOOP_HOME/bin/hdfs haadmin -getServiceState nn2
standby


-- 甚至可以直接reboot状态为active的namenode节点(执行操作系统的重启动作,看另一个standby状态的namenode节点是否能正常转换成acitve状态
-- 甚至可以在有作业运行的时候去执行reboot操作系统(namenode的active节点执行)以测试双节点故障转移是否确实健壮


-- 集群相关网页:
-- http://funshion-hadoop194:50070/dfshealth.html#tab-overview

-- ##################################################################################


-- Step 6. 上传测试数据:


-- Step 6.1 安装wget包、创建相关目录及shell上传数据脚本:
[root@funshion-hadoop194 ~]# yum -y install wget
[hadoop@funshion-hadoop194 ~]$ 
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/datateam/ghh/lab
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/down
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/put
[hadoop@funshion-hadoop194 ~]$ mkdir -p /home/hadoop/log_catch/zip
[hadoop@funshion-hadoop194 ~]$ vi /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh

#!/bin/bash


function f_show_info()
{
printf "%20s = %s\n" "$1" "$2"
return 0
}


function f_catch_all_day_log()
{
local str_date=""
local year=""
local month=""
local day=""


for(( str_date=${g_start_date};${str_date} do
year=$(date -d "${str_date}" +%Y )
month=$(date -d "${str_date}" +%m )
day=$(date -d "${str_date}" +%d )
f_catch_all_log ${year} ${month} ${day}
done
}


function f_catch_all_log()
{
local year="$1"
local month="$2"
local day="$3"
local hour=""
local date_hour=""
local date_dir=""
local hdfs_dir=""
local g_hdfs_dir=""
local hdfs_file=""
local url=""
local i=0
local nRet=0

for(( i=${g_start_hour};i do
hour=$(printf "%02d" "$i")
date_hour="${year}${month}${day}${hour}"
date_dir="${year}/${month}/${day}"
hdfs_dir="${year}/${month}/${day}/${hour}"
g_hdfs_dir="${g_hdfs_path}/${hdfs_dir}"
hdfs_file="${g_hdfs_path}/${hdfs_dir}/BeiJing_YiZhuang_CTC_${date_hour}.lzo"


url="${g_url}/${date_dir}/BeiJing_YiZhuang_CTC_${date_hour}.gz"
f_show_info "url" "${url}"
f_show_info "hdfs" "${hdfs_file}"
f_catch_log "${url}" "${hdfs_file}" "${g_hdfs_dir}"


hdfs_file="${g_hdfs_path}/${hdfs_dir}/BeiJing_ShangDi_CNC_${date_hour}.lzo"
url="${g_url}/${date_dir}/BeiJing_ShangDi_CNC_${date_hour}.gz"
f_show_info "url" "${url}"
f_show_info "hdfs" "${hdfs_file}"
f_catch_log "${url}" "${hdfs_file}" "${g_hdfs_dir}"
done
return $nRet
}


function f_catch_log()
{
local tmp_name=$( uuidgen | sed 's/-/_/g' )
local local_down_file="${g_local_down_path}/${tmp_name}"
local local_zip_file="${g_local_zip_path}/${tmp_name}"
local local_put_file="${g_local_put_path}/${tmp_name}"
local log_url="$1"
local hdfs_file="$2"
local nRet=0


if [[ 0 == $nRet ]];then
wget -O "${local_down_file}" "${log_url}"
nRet=$?
fi

if [[ 0 == $nRet ]];then
gzip -cd "${local_down_file}" | lzop -o "${local_zip_file}"
nRet=$?
fi


#       if [[ 0 == $nRet ]];then
#               gzip -cd "${local_down_file}" > "${local_zip_file}"
#               nRet=$?
#       fi


if [[ 0 == $nRet ]];then
mv "${local_zip_file}" "${local_put_file}"
hdfs dfs -mkdir -p "${g_hdfs_dir}"
hdfs dfs -put "${local_put_file}" "${hdfs_file}"
nRet=$?
fi


if [[ 0 == $nRet ]];then
hadoop jar /usr/local/hadoop/lib/native/hadoop-lzo-0.4.20-SNAPSHOT.jar com.hadoop.compression.lzo.LzoIndexer "${hdfs_file}"
nRet=$?
fi


rm -rf "${local_down_file}" "${local_put_file}" "${local_zip_file}"


return $nRet
}

# shell begins here

g_local_down_path="/home/hadoop/log_catch/down"
g_local_zip_path="/home/hadoop/log_catch/zip"
g_local_put_path="/home/hadoop/log_catch/put"

g_start_date=""
g_end_date=""
g_start_hour=0
g_end_hour=0
g_hdfs_path=""
g_url=""

nRet=0


if [[ 0 == $nRet ]];then
if [[ $# -ne 6 ]];then
f_show_info "cmd format" "sh ./log_catch.sh 'url' 'hdfs_path' 'start_date' 'end_date' 'start_hour' 'end_hour'"
nRet=1
else
g_url="$1"
g_hdfs_path="$2"
g_start_date="$3"
g_end_date="$4"
g_start_hour="$5"
g_end_hour="$6"
fi
fi


if [[ 0 == $nRet ]];then
f_catch_all_day_log
nRet=$?
fi


exit $nRet

-- Step 6.2 调用脚本上传数据:
[hadoop@funshion-hadoop194 ~]$ nohup sh /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh 'http://192.168.116.61:8081/website/pv/2' 'hdfs://mycluster/dw/logs/web/origin/pv/2' 20140524 20140525 0 23 &

-- nohup sh /home/hadoop/datateam/ghh/lab/log_catch_hour_lzo.sh 'http://192.168.116.61:8081/website/pv/2' 'hdfs://mycluster/dw/logs/web/origin/pv/2' 20140525 20140525 3 23 &

-- 上面这些脚本都是取公司的Oxeye的日志数据。(大家可以忽略此步操作)

-- Step 7. Hive安装(安装到196机器) (使用Hive与HBase整合安装;使用源码编译安装)

-- (其实应该先安装hbase,再安装hive可能顺序合理一点)


-- 参考:https://cwiki.apache.org/conflue ... iorto0.13onHadoop23
http://www.hadoopor.com/thread-5470-1-1.html
http://blog.csdn.net/hguisu/article/details/7282050
http://blog.csdn.net/hguisu/article/details/7282050
http://www.micmiu.com/bigdata/hive/hive-hbase-integration/

-- 源码下载编译操作如下:
mkdir -p /opt/software/hive_src
cd /opt/software/hive_src/
svn checkout http://svn.apache.org/repos/asf/hive/trunk/ hive_trunk
cd /opt/software/hive_src/hive_trunk


-- 下载以后,我们检查 hive_trunk目录下的pom.xml文件,发现hadoop-23.version这个变量已经引用了hadoop 2.4.0版本,所以,我们可以什么也不用修改,直接用ant去编译:
2.4.0


-- 或者如果发现版本不正确的话,我们可以这样指定参数执行(也可以修改pom.xml文件中对应正确的hadoop、hbase、zookeeper版本):
-- 最后我选用的版本相关参数如下:
2.4.0
0.98.3-hadoop1
0.98.3-hadoop2
3.4.6


-- 最后,开始编译:
cd /opt/software/hive_src/hive_trunk
mvn clean package -DskipTests -Phadoop-2,dist


[INFO] Hive .............................................. SUCCESS [  6.481 s]
[INFO] Hive Ant Utilities ................................ SUCCESS [  4.427 s]
[INFO] Hive Shims Common ................................. SUCCESS [  2.418 s]
[INFO] Hive Shims 0.20 ................................... SUCCESS [  1.284 s]
[INFO] Hive Shims Secure Common .......................... SUCCESS [  2.466 s]
[INFO] Hive Shims 0.20S .................................. SUCCESS [  0.961 s]
[INFO] Hive Shims 0.23 ................................... SUCCESS [  3.247 s]
[INFO] Hive Shims ........................................ SUCCESS [  0.364 s]
[INFO] Hive Common ....................................... SUCCESS [  5.259 s]
[INFO] Hive Serde ........................................ SUCCESS [  7.428 s]
[INFO] Hive Metastore .................................... SUCCESS [ 27.000 s]
[INFO] Hive Query Language ............................... SUCCESS [ 51.924 s]
[INFO] Hive Service ...................................... SUCCESS [  6.037 s]
[INFO] Hive JDBC ......................................... SUCCESS [ 14.293 s]
[INFO] Hive Beeline ...................................... SUCCESS [  1.406 s]
[INFO] Hive CLI .......................................... SUCCESS [ 10.297 s]
[INFO] Hive Contrib ...................................... SUCCESS [  1.418 s]
[INFO] Hive HBase Handler ................................ SUCCESS [ 33.679 s]
[INFO] Hive HCatalog ..................................... SUCCESS [  0.443 s]
[INFO] Hive HCatalog Core ................................ SUCCESS [  8.040 s]
[INFO] Hive HCatalog Pig Adapter ......................... SUCCESS [  1.795 s]
[INFO] Hive HCatalog Server Extensions ................... SUCCESS [  2.007 s]
[INFO] Hive HCatalog Webhcat Java Client ................. SUCCESS [  1.548 s]
[INFO] Hive HCatalog Webhcat ............................. SUCCESS [ 11.718 s]
[INFO] Hive HCatalog Streaming ........................... SUCCESS [  1.845 s]
[INFO] Hive HWI .......................................... SUCCESS [  1.246 s]
[INFO] Hive ODBC ......................................... SUCCESS [  0.626 s]
[INFO] Hive Shims Aggregator ............................. SUCCESS [  0.192 s]
[INFO] Hive TestUtils .................................... SUCCESS [  0.324 s]
[INFO] Hive Packaging .................................... SUCCESS [01:21 min]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 04:53 min
[INFO] Finished at: 2014-06-22T11:58:05+08:00
[INFO] Final Memory: 147M/1064M
[INFO] ------------------------------------------------------------------------

-- 最后,/opt/software/hive_src/hive_trunk/packaging/target 目录下的 apache-hive-0.14.0-SNAPSHOT-bin.tar.gz 文件,就是我们需要的安装包(这个版本还没有正式发布)

-- Step 7.1 My SQL安装(安装到194机器),并在My SQL中创建名为hive的数据库用以存放hive元数据:


-- 安装如下rpm包
rpm -ivh MySQL-client-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-devel-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-embedded-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -e --nodeps mysql-libs-5.1.66-2.el6_3.x86_64
rpm -ivh MySQL-server-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-shared-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-shared-compat-5.6.17-1.linux_glibc2.5.x86_64.rpm
rpm -ivh MySQL-test-5.6.17-1.linux_glibc2.5.x86_64.rpm


A RANDOM PASSWORD HAS BEEN SET FOR THE MySQL root USER !
You will find that password in '/root/.mysql_secret'.

You must change that password on your first connect,
no other statement but 'SET PASSWORD' will be accepted.
See the manual for the semantics of the 'password expired' flag.

Also, the account for the anonymous user has been removed.

In addition, you can run:

 /usr/bin/mysql_secure_installation

which will also give you the option of removing the test database.
This is strongly recommended for production servers.


See the manual for more instructions.
Please report any problems at http://bugs.mysql.com/
The latest information about MySQL is available on the web at
 http://www.mysql.com
Support MySQL by buying support/licenses at http://shop.mysql.com
New default config file was created as /usr/my.cnf and
will be used by default by the server when you start it.
You may edit this file to change server settings
-- 查看安装生成的root用户随机密码:
[root@funshion-hadoop194 ~]# more /root/.mysql_secret
# The random password set for the root user at Mon Jun  9 18:18:48 2014 (local time): QVkyOjwSlAEiPaeT


-- 登录My SQL数据库并修改root密码,并创建名为hive的数据库与用户:
[root@funshion-hadoop194 ~]# service mysql start
Starting MySQL... SUCCESS! 


-- 设置mysql服务自启动
chkconfig mysql on


[root@funshion-hadoop194 ~]# mysql -uroot -pQVkyOjwSlAEiPaeT
Warning: Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.6.17

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SET PASSWORD = PASSWORD('bee56915');
Query OK, 0 rows affected (0.00 sec)


mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)


mysql> CREATE DATABASE `hive` /*!40100 DEFAULT CHARACTER SET utf8 */;
Query OK, 1 row affected (0.00 sec)


mysql> CREATE USER 'hive'@'funshion-hadoop196' IDENTIFIED BY password('bee56915');
Query OK, 0 rows affected (0.00 sec)


GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'%' Identified by 'bee56915'; 
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'localhost' Identified by 'bee56915'; 
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'127.0.0.1' Identified by 'bee56915';  
GRANT ALL PRIVILEGES ON hive.* TO 'hive'@'funshion-hadoop196' Identified by 'bee56915'; 

-- Step 7.2 解决hive安装包到/usr/local下,添加hive相关环境变量:

[root@funshion-hadoop194 ~]# cd /opt/software
[root@funshion-hadoop194 software]# ls -l|grep hive
-rw-r--r--.  1 root root  65662469 May 15 14:04 hive-0.12.0-bin.tar.gz
[root@funshion-hadoop194 software]# tar -xvf ./hive-0.12.0-bin.tar.gz
[root@funshion-hadoop194 software]#  mv hive-0.12.0-bin /usr/local
[root@funshion-hadoop194 software]# cd /usr/local
[root@funshion-hadoop194 local]# chown -R hadoop.hadoop ./hive-0.12.0-bin
[root@funshion-hadoop194 local]# ln -s hive-0.12.0-bin hive

[hadoop@funshion-hadoop194 local]$ vi ~/.bash_profile
export HIVE_HOME=/usr/local/hive
export PATH=$PATH:$HIVE_HOME/bin

[hadoop@funshion-hadoop194 local]$ source ~/.bash_profile

-- Step 7.3 在My SQL数据库的hive数据库中执行创建hive元数据脚本:


[hadoop@funshion-hadoop194 mysql]$ mysql -uroot -pbee56915
Warning: Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor.  Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.6.17 MySQL Community Server (GPL)


Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.


Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> use hive;
Database changed
mysql> source /usr/local/hive/scripts/metastore/upgrade/mysql/hive-schema-0.14.0.mysql.sql

mysql> show tables;
+---------------------------+
| Tables_in_hive            |
+---------------------------+
| BUCKETING_COLS            |
| CDS                       |
| COLUMNS_V2                |
| DATABASE_PARAMS           |
| DBS                       |
| DB_PRIVS                  |
| DELEGATION_TOKENS         |
| GLOBAL_PRIVS              |
| IDXS                      |
| INDEX_PARAMS              |
| MASTER_KEYS               |
| NUCLEUS_TABLES            |
| PARTITIONS                |
| PARTITION_EVENTS          |
| PARTITION_KEYS            |
| PARTITION_KEY_VALS        |
| PARTITION_PARAMS          |
| PART_COL_PRIVS            |
| PART_COL_STATS            |
| PART_PRIVS                |
| ROLES                     |
| ROLE_MAP                  |
| SDS                       |
| SD_PARAMS                 |
| SEQUENCE_TABLE            |
| SERDES                    |
| SERDE_PARAMS              |
| SKEWED_COL_NAMES          |
| SKEWED_COL_VALUE_LOC_MAP  |
| SKEWED_STRING_LIST        |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES             |
| SORT_COLS                 |
| TABLE_PARAMS              |
| TAB_COL_STATS             |
| TBLS                      |
| TBL_COL_PRIVS             |
| TBL_PRIVS                 |
| TYPES                     |
| TYPE_FIELDS               |
| VERSION                   |
+---------------------------+
41 rows in set (0.00 sec)

mysql> grant all privileges on hive.* to 'hive'@'funshion-hadoop196';
Query OK, 0 rows affected (0.00 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)

mysql> exit
Bye
[hadoop@funshion-hadoop194 mysql]$ 

-- Step 7.4 修改hive相关配置文件:

[hadoop@funshion-hadoop194 mysql]$ cd $HIVE_HOME/conf
[hadoop@funshion-hadoop194 conf]$ ls -l
total 92
-rw-rw-r--. 1 hadoop hadoop 81186 Oct 10  2013 hive-default.xml.template
-rw-rw-r--. 1 hadoop hadoop  2378 Oct 10  2013 hive-env.sh.template
-rw-rw-r--. 1 hadoop hadoop  2465 Oct 10  2013 hive-exec-log4j.properties.template
-rw-rw-r--. 1 hadoop hadoop  2870 Oct 10  2013 hive-log4j.properties.template

[hadoop@funshion-hadoop194 conf]$ mv hive-env.sh.template hive-env.sh
[hadoop@funshion-hadoop194 conf]$ mv hive-default.xml.template hive-site.xml


-- 7.4.1 修改 $HIVE_HOME/bin/hive-config.sh 文件,添加如下环境变量:

[hadoop@funshion-hadoop194 conf]$ vi $HIVE_HOME/bin/hive-config.sh

export JAVA_HOME=/usr/java/latest
export HIVE_HOME=/usr/local/hive
export HADOOP_HOME=/usr/local/hadoop

-- 7.4.2 修改 $HIVE_HOME/conf/hive-site.xml 的第2002行:

4.4.报错—请修改hive-site.xml:(vi编辑下: /auth)

-- 原值:
auth

-- 修改为:
auth

-- 7.4.3 修改 $HIVE_HOME/conf/hive-site.xml 的如下property:



-- 7.4.3.1
-- 原值:

 javax.jdo.option.ConnectionURL
 jdbc:derby:;databaseName=metastore_db;create=true
 JDBC connect string for a JDBC metastore


-- 修改为:

 javax.jdo.option.ConnectionURL
 jdbc:mysql://funshion-hadoop194:3306/hive?createDatabaseIfNotExist=true
 JDBC connect string for a JDBC metastore


-- 7.4.3.2
-- 原值:

 javax.jdo.option.ConnectionDriverName
 org.apache.derby.jdbc.EmbeddedDriver
 Driver class name for a JDBC metastore


-- 修改为:

 javax.jdo.option.ConnectionDriverName
 com.mysql.jdbc.Driver
 Driver class name for a JDBC metastore


-- 7.4.3.3
-- 原值:

javax.jdo.option.ConnectionUserName
APP
username to use against metastore database


-- 修改为:

javax.jdo.option.ConnectionUserName
hive
username to use against metastore database


-- 7.4.3.4
-- 原值:

javax.jdo.option.ConnectionPassword
mine
password to use against metastore database


-- 修改为

javax.jdo.option.ConnectionPassword
bee56915
password to use against metastore database


-- 7.4.3.5
-- 原值:

hive.metastore.warehouse.dir
/user/hive/warehouse
location of default database for the warehouse


-- 修改为:

hive.metastore.warehouse.dir
hdfs://mycluster:8020/user/hive/warehouse
location of default database for the warehouse


-- 7.4.3.6
-- 原值:

hive.exec.scratchdir
/tmp/hive-${user.name}
Scratch space for Hive jobs


-- 修改为:

hive.exec.scratchdir
hdfs://mycluster:8020/tmp/hive-${user.name}
Scratch space for Hive jobs


-- 添加:

hbase.zookeeper.quorum
funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198



hive.aux.jars.path
 
file:///usr/local/hive/lib/hive-ant-0.14.0-SNAPSHOT.jar,
file:///usr/local/hive/lib/protobuf-java-2.5.0.jar,
file:///usr/local/hbase/lib/hbase-server-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-client-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2-tests.jar,
file:///usr/local/hbase/lib/hbase-protocol-0.98.3-hadoop2.jar,
file:///usr/local/hbase/lib/htrace-core-2.04.jar,
file:///usr/local/hive/lib/zookeeper-3.4.6.jar,
file:///usr/local/hive/lib/guava-11.0.2.jar




-- 上面格式是方便查看,真正使用下面的格式:将所有的jar包放到一行:

hive.aux.jars.path
file:///usr/local/hive/lib/hive-ant-0.14.0-SNAPSHOT.jar,file:///usr/local/hbase/lib/hbase-server-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-client-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/hbase-common-0.98.3-hadoop2-tests.jar,file:///usr/local/hbase/lib/hbase-protocol-0.98.3-hadoop2.jar,file:///usr/local/hbase/lib/htrace-core-2.04.jar,file:///usr/local/hive/lib/zookeeper-3.4.6.jar



-- 首先需要把hive/lib下的hbase包替换成安装的hbase的,需要如下几下:
hbase-client-0.98.2-hadoop2.jar
hbase-common-0.98.2-hadoop2.jar
hbase-common-0.98.2-hadoop2-tests.jar
hbase-protocol-0.98.2-hadoop2.jar
htrace-core-2.04.jar
hbase-server-0.98.2-hadoop2.jar


将hadoop节点添加到hive-site.xml中

hbase.zookeeper.quorum
所有节点



-- 另外,你必须在创建Hive库表前,在HDFS上创建/tmp和/user/hive/warehouse(也称为hive.metastore.warehouse.dir所指定的目录),并且将它们的权限设置为chmod g+w。完成这个操作的命令如下:
$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp
$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp
$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

-- Step 7.5 启动并登录hive,并创建hive表


14/06/16 18:58:50 WARN conf.HiveConf: DEPRECATED: hive.metastore.ds.retry.* no longer has any effect.  Use hive.hmshandler.retry.* instead


-- 集群启动:
# bin/hive --service hiveserver -hiveconf hbase.zookeeper.quorum=funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198 &
# bin/hive -hiveconf hbase.zookeeper.quorum=funshion-hadoop194,funshion-hadoop195,funshion-hadoop196,funshion-hadoop197,funshion-hadoop198 &
# bin/hive -hiveconf hive.root.logger=DEBUG,console hbase.master=funshion-hadoop194:60010


# bin/hive -hiveconf hbase.master=funshion-hadoop194:60010 --auxpath /usr/local/hive/lib/hive-ant-0.13.1.jar,/usr/local/hive/lib/protobuf-java-2.5.0.jar,/usr/local/hive/lib/hbase-client-0.98.3-hadoop2.jar, \
/usr/local/hive/lib/hbase-common-0.98.3-hadoop2.jar,/usr/local/hive/lib/zookeeper-3.4.6.jar,/usr/local/hive/lib/guava-11.0.2.jar


#bin/hive -hiveconf hbase.zookeeper.quorum=node1,node2,node3


-- 客户端登录:
$HIVE_HOME/bin/hive -h127.0.0.1 -p10000
$HIVE_HOME/bin/hive -hfunshion-hadoop194 -p10000
$HIVE_HOME/bin/hive -p10000


[hadoop@funshion-hadoop194 lib]$ hive --service hiveserver & 


[hadoop@funshion-hadoop194 lib]$ hive
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/06/10 16:56:59 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative


Logging initialized using configuration in jar:file:/usr/local/hive-0.12.0-bin/lib/hive-common-0.12.0.jar!/hive-log4j.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.4.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hive-0.12.0-bin/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
hive> show databases;
OK
Failed with exception java.io.IOException:java.io.IOException: Cannot create an instance of InputFormat class org.apache.hadoop.mapred.TextInputFormat as specified in mapredWork!


-- 如果报类似如上错误,在 ~/.bash_profile 添加环境变量,如下:

export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native/Linux-amd64-64
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/lib/native/hadoop-lzo-0.4.20-SNAPSHOT.jar


-- hive客户端登录:
[hadoop@funshion-hadoop194 bin]$  $HIVE_HOME/bin/hive -h127.0.0.1 -p10000
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/06/10 17:13:17 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative


Logging initialized using configuration in jar:file:/usr/local/hive-0.12.0-bin/lib/hive-common-0.12.0.jar!/hive-log4j.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop-2.4.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/hive-0.12.0-bin/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
[127.0.0.1:10000] hive> create database web;
OK
[127.0.0.1:10000] hive> CREATE EXTERNAL TABLE pv2(
                      >   protocol string, 
                      >   rprotocol string, 
                      >   time int, 
                      >   ip string, 
                      >   fck string, 
                      >   mac string, 
                      >   userid string, 
                      >   fpc string, 
                      >   version string, 
                      >   sid string, 
                      >   pvid string, 
                      >   config string, 
                      >   url string, 
                      >   referurl string, 
                      >   channelid string, 
                      >   vtime string, 
                      >   ext string, 
                      >   useragent string, 
                      >   step string, 
                      >   sestep string, 
                      >   seidcount string, 
                      >   ta string)
                      > PARTITIONED BY ( 
                      >   year string, 
                      >   month string, 
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Probleme bei der Bewertung des Clustering-Effekts in Clustering-Algorithmen Probleme bei der Bewertung des Clustering-Effekts in Clustering-Algorithmen Oct 10, 2023 pm 01:12 PM

Das Problem der Clustering-Effektbewertung im Clustering-Algorithmus erfordert spezifische Codebeispiele. Clustering ist eine unbeaufsichtigte Lernmethode, die ähnliche Stichproben durch Clustering von Daten in eine Kategorie gruppiert. Bei Clustering-Algorithmen ist die Bewertung des Clustering-Effekts ein wichtiges Thema. In diesem Artikel werden mehrere häufig verwendete Indikatoren zur Bewertung des Clustering-Effekts vorgestellt und entsprechende Codebeispiele gegeben. 1. Clustering-Effekt-Bewertungsindex Silhouette-Koeffizient Der Silhouette-Koeffizient bewertet den Clustering-Effekt, indem er die Nähe der Stichprobe und den Grad der Trennung von anderen Clustern berechnet.

Erfahren Sie, wie Sie häufige iPhone-Probleme diagnostizieren Erfahren Sie, wie Sie häufige iPhone-Probleme diagnostizieren Dec 03, 2023 am 08:15 AM

Das iPhone ist für seine leistungsstarke Leistung und seine vielseitigen Funktionen bekannt und ist nicht immun gegen gelegentliche Probleme oder technische Schwierigkeiten, ein häufiges Merkmal komplexer elektronischer Geräte. iPhone-Probleme können frustrierend sein, aber normalerweise ist kein Alarm erforderlich. In diesem umfassenden Leitfaden möchten wir einige der am häufigsten auftretenden Herausforderungen im Zusammenhang mit der iPhone-Nutzung entmystifizieren. Unser Schritt-für-Schritt-Ansatz soll Ihnen bei der Lösung dieser häufigen Probleme helfen und praktische Lösungen und Tipps zur Fehlerbehebung bieten, damit Ihre Geräte wieder einwandfrei funktionieren. Unabhängig davon, ob Sie mit einer Störung oder einem komplexeren Problem konfrontiert sind, kann Ihnen dieser Artikel dabei helfen, diese effektiv zu beheben. Allgemeine Tipps zur Fehlerbehebung Bevor wir uns mit den spezifischen Schritten zur Fehlerbehebung befassen, finden Sie hier einige hilfreiche Tipps

So lösen Sie das Problem, dass jQuery den Formularelementwert nicht abrufen kann So lösen Sie das Problem, dass jQuery den Formularelementwert nicht abrufen kann Feb 19, 2024 pm 02:01 PM

Um das Problem zu lösen, dass jQuery.val() nicht verwendet werden kann, sind spezifische Codebeispiele erforderlich. Für Front-End-Entwickler ist die Verwendung von jQuery eine der häufigsten Operationen. Unter diesen ist die Verwendung der .val()-Methode zum Abrufen oder Festlegen des Werts eines Formularelements eine sehr häufige Operation. In bestimmten Fällen kann jedoch das Problem auftreten, dass die Methode .val() nicht verwendet werden kann. In diesem Artikel werden einige gängige Situationen und Lösungen vorgestellt und spezifische Codebeispiele bereitgestellt. Problembeschreibung: Wenn Sie jQuery zum Entwickeln von Front-End-Seiten verwenden, treten manchmal Probleme auf

Das Problem der Generalisierungsfähigkeit maschineller Lernmodelle Das Problem der Generalisierungsfähigkeit maschineller Lernmodelle Oct 08, 2023 am 10:46 AM

Die Generalisierungsfähigkeit von Modellen für maschinelles Lernen erfordert spezifische Codebeispiele. Da die Entwicklung und Anwendung von maschinellem Lernen immer weiter verbreitet wird, wird der Generalisierungsfähigkeit von Modellen für maschinelles Lernen immer mehr Aufmerksamkeit geschenkt. Die Generalisierungsfähigkeit bezieht sich auf die Vorhersagefähigkeit eines maschinellen Lernmodells anhand unbeschrifteter Daten und kann auch als Anpassungsfähigkeit des Modells in der realen Welt verstanden werden. Ein gutes Modell für maschinelles Lernen sollte über eine hohe Generalisierungsfähigkeit verfügen und in der Lage sein, genaue Vorhersagen für neue Daten zu treffen. In praktischen Anwendungen stoßen wir jedoch häufig auf Modelle, die im Trainingssatz gut funktionieren, im Testsatz oder in der Realität jedoch versagen

Können im Mistlock Kingdom Gebäude in freier Wildbahn gebaut werden? Können im Mistlock Kingdom Gebäude in freier Wildbahn gebaut werden? Mar 07, 2024 pm 08:28 PM

Spieler können beim Spielen im Mistlock-Königreich verschiedene Materialien sammeln. Viele Spieler möchten wissen, ob Gebäude im Mistlock-Königreich nicht in der Wildnis gebaut werden können. . Können im Mistlock Kingdom Gebäude in freier Wildbahn gebaut werden? 1. In den wilden Gebieten des Mist Lock Kingdom können keine Gebäude gebaut werden. 2. Das Gebäude muss im Rahmen des Altars errichtet werden. 3. Spieler können den Geisterfeueraltar selbst errichten, aber sobald sie den Bereich verlassen, können sie keine Gebäude mehr errichten. 4. Wir können als Zuhause auch direkt ein Loch in den Berg graben, sodass wir keine Baumaterialien verbrauchen müssen. 5. In den von den Spielern selbst gebauten Gebäuden gibt es einen Komfortmechanismus, d. h. je besser die Innenausstattung, desto höher der Komfort. 6. Hoher Komfort bringt den Spielern Attributsboni, wie z

Welche Fragen gibt es in der Rulong 8 Wine Master-Prüfung? Welche Fragen gibt es in der Rulong 8 Wine Master-Prüfung? Feb 02, 2024 am 10:18 AM

Welche Fragen beinhaltet die Yulong 8 Wine Master-Prüfung? Wie lautet die entsprechende Antwort? Wie kann man die Prüfung schnell bestehen? Es gibt viele Fragen, die in den Prüfungsaktivitäten zum Master of Wine beantwortet werden müssen, und wir können auf die Antworten zurückgreifen, um sie zu lösen. Bei all diesen Fragen geht es um Weinkenntnisse. Wenn Sie eine Referenz benötigen, schauen wir uns die detaillierte Analyse der Antworten auf die Prüfungsfragen zum Yakuza 8 Wine Master an! Ausführliche Erklärung der Antworten auf Fragen in der Rulong 8 Wine Master-Prüfung 1. Fragen zum Thema „Wein“. Dies ist ein destillierter Likör, der von einer von der königlichen Familie gegründeten Brennerei hergestellt wird. Er wird aus dem Zucker von Zuckerrohr gebraut, das in großen Mengen auf Hawaii angebaut wird. Wie heißt dieser Wein? Antwort: Rum 2. Frage zu „Wein“. Das Bild zeigt ein Getränk aus trockenem Ginseng und trockenem Wermut. Es zeichnet sich durch die Zugabe von Oliven aus und ist als „Cockney“ bekannt.

Probleme beim Belohnungsdesign beim verstärkenden Lernen Probleme beim Belohnungsdesign beim verstärkenden Lernen Oct 08, 2023 pm 01:09 PM

Das Problem des Belohnungsdesigns beim Reinforcement Learning erfordert spezifische Codebeispiele. Reinforcement Learning ist eine Methode des maschinellen Lernens, deren Ziel darin besteht, zu lernen, wie man Aktionen durchführt, die die kumulativen Belohnungen durch Interaktion mit der Umgebung maximieren. Beim verstärkenden Lernen spielt die Belohnung eine entscheidende Rolle. Sie ist ein Signal im Lernprozess des Agenten und wird zur Steuerung seines Verhaltens verwendet. Das Belohnungsdesign ist jedoch ein herausforderndes Problem, und ein angemessenes Belohnungsdesign kann die Leistung von Verstärkungslernalgorithmen stark beeinträchtigen. Beim verstärkenden Lernen können Belohnungen als der Agent gegenüber der Umgebung betrachtet werden

Probleme mit der Sprachflüssigkeit in der Sprachsynthesetechnologie Probleme mit der Sprachflüssigkeit in der Sprachsynthesetechnologie Oct 09, 2023 pm 12:00 PM

Probleme mit der Sprachflüssigkeit und Codebeispiele in der Sprachsynthesetechnologie Einführung: Die Sprachsynthesetechnologie ist eine komplexe Aufgabe, die Sprachsignalverarbeitung, Verarbeitung natürlicher Sprache und maschinelles Lernen umfasst. Eines der Probleme mit der Sprachflüssigkeit bezieht sich darauf, ob die erzeugte synthetische Sprache natürlich, glatt und kohärent klingt. In diesem Artikel wird das Problem der Sprachflüssigkeit in der Sprachsynthesetechnologie erörtert und einige Beispielcodes bereitgestellt, um den Lesern zu helfen, dieses Problem und seine Lösung besser zu verstehen. 1. Ursachen für Probleme mit der Sprachflüssigkeit: Probleme mit der Sprachflüssigkeit können durch folgende Faktoren verursacht werden:

See all articles