数据库一步一步入门
数据库表 一个数据库通常包含一个或多个表。每个表由一个名字标识(例如“客户”或者“订单”)。表包含带有数据的记录(行)。 下面的例子是一个名为 Persons 的表: Id LastName FirstName Address City 1 Adams John Oxford Street London 2 Bush George
数据库表
一个数据库通常包含一个或多个表。每个表由一个名字标识(例如“客户”或者“订单”)。表包含带有数据的记录(行)。
下面的例子是一个名为 "Persons" 的表:
Id | LastName | FirstName | Address | City |
---|---|---|---|---|
1 | Adams | John | Oxford Street | London |
2 | Bush | George | Fifth Avenue | New York |
3 | Carter | Thomas | Changan Street | Beijing |
上面的表包含三条记录(每一条对应一个人)和五个列(Id、姓、名、地址和城市)。
SQL 语句
您需要在数据库上执行的大部分工作都由 SQL 语句完成。
下面的语句从表中选取 LastName 列的数据:
SELECT LastName FROM Persons
结果集类似这样:
LastName |
---|
Adams |
Bush |
Carter |
在本教程中,我们将为您讲解各种不同的 SQL 语句。
重要事项
一定要记住,SQL 对大小写不敏感!
SQL 语句后面的分号?
某些数据库系统要求在每条 SQL 命令的末端使用分号。在我们的教程中不使用分号。
分号是在数据库系统中分隔每条 SQL 语句的标准方法,这样就可以在对服务器的相同请求中执行一条以上的语句。
如果您使用的是 MS Access 和 SQL Server 2000,则不必在每条 SQL 语句之后使用分号,不过某些数据库软件要求必须使用分号。
SQL DML 和 DDL
可以把 SQL 分为两个部分:数据操作语言 (DML) 和 数据定义语言 (DDL)。SQL (结构化查询语言)是用于执行查询的语法。但是 SQL 语言也包含用于更新、插入和删除记录的语法。
查询和更新指令构成了 SQL 的 DML 部分:
- SELECT - 从数据库表中获取数据
- UPDATE - 更新数据库表中的数据
- DELETE - 从数据库表中删除数据
- INSERT INTO - 向数据库表中插入数据
SQL 的数据定义语言 (DDL) 部分使我们有能力创建或删除表格。我们也可以定义索引(键),规定表之间的链接,以及施加表间的约束。
SQL 中最重要的 DDL 语句:
- CREATE DATABASE - 创建新数据库
- ALTER DATABASE - 修改数据库
- CREATE TABLE - 创建新表
- ALTER TABLE - 变更(改变)数据库表
- DROP TABLE - 删除表
- CREATE INDEX - 创建索引(搜索键)
- DROP INDEX - 删除索引

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Kimi: In nur einem Satz, in nur zehn Sekunden ist ein PPT fertig. PPT ist so nervig! Um ein Meeting abzuhalten, benötigen Sie einen PPT; um einen wöchentlichen Bericht zu schreiben, müssen Sie einen PPT vorlegen, auch wenn Sie jemanden des Betrugs beschuldigen PPT. Das College ähnelt eher dem Studium eines PPT-Hauptfachs. Man schaut sich PPT im Unterricht an und macht PPT nach dem Unterricht. Als Dennis Austin vor 37 Jahren PPT erfand, hatte er vielleicht nicht damit gerechnet, dass PPT eines Tages so weit verbreitet sein würde. Wenn wir über unsere harte Erfahrung bei der Erstellung von PPT sprechen, treiben uns Tränen in die Augen. „Es dauerte drei Monate, ein PPT mit mehr als 20 Seiten zu erstellen, und ich habe es Dutzende Male überarbeitet. Als ich das PPT sah, musste ich mich übergeben.“ war PPT.“ Wenn Sie ein spontanes Meeting haben, sollten Sie es tun

Am frühen Morgen des 20. Juni (Pekinger Zeit) gab CVPR2024, die wichtigste internationale Computer-Vision-Konferenz in Seattle, offiziell die besten Beiträge und andere Auszeichnungen bekannt. In diesem Jahr wurden insgesamt 10 Arbeiten ausgezeichnet, darunter zwei beste Arbeiten und zwei beste studentische Arbeiten. Darüber hinaus gab es zwei Nominierungen für die beste Arbeit und vier Nominierungen für die beste studentische Arbeit. Die Top-Konferenz im Bereich Computer Vision (CV) ist die CVPR, die jedes Jahr zahlreiche Forschungseinrichtungen und Universitäten anzieht. Laut Statistik wurden in diesem Jahr insgesamt 11.532 Arbeiten eingereicht, von denen 2.719 angenommen wurden, was einer Annahmequote von 23,6 % entspricht. Laut der statistischen Analyse der CVPR2024-Daten des Georgia Institute of Technology befassen sich die meisten Arbeiten aus Sicht der Forschungsthemen mit der Bild- und Videosynthese und -generierung (Imageandvideosyn

Wir wissen, dass LLM auf großen Computerclustern unter Verwendung umfangreicher Daten trainiert wird. Auf dieser Website wurden viele Methoden und Technologien vorgestellt, die den LLM-Trainingsprozess unterstützen und verbessern. Was wir heute teilen möchten, ist ein Artikel, der tief in die zugrunde liegende Technologie eintaucht und vorstellt, wie man einen Haufen „Bare-Metals“ ohne Betriebssystem in einen Computercluster für das LLM-Training verwandelt. Dieser Artikel stammt von Imbue, einem KI-Startup, das allgemeine Intelligenz durch das Verständnis der Denkweise von Maschinen erreichen möchte. Natürlich ist es kein einfacher Prozess, einen Haufen „Bare Metal“ ohne Betriebssystem in einen Computercluster für das Training von LLM zu verwandeln, aber Imbue hat schließlich erfolgreich ein LLM mit 70 Milliarden Parametern trainiert der Prozess akkumuliert

Herausgeber des Machine Power Report: Yang Wen Die Welle der künstlichen Intelligenz, repräsentiert durch große Modelle und AIGC, hat unsere Lebens- und Arbeitsweise still und leise verändert, aber die meisten Menschen wissen immer noch nicht, wie sie sie nutzen sollen. Aus diesem Grund haben wir die Kolumne „KI im Einsatz“ ins Leben gerufen, um detailliert vorzustellen, wie KI durch intuitive, interessante und prägnante Anwendungsfälle für künstliche Intelligenz genutzt werden kann, und um das Denken aller anzuregen. Wir heißen Leser auch willkommen, innovative, praktische Anwendungsfälle einzureichen. Videolink: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Vor kurzem wurde der Lebens-Vlog eines allein lebenden Mädchens auf Xiaohongshu populär. Eine Animation im Illustrationsstil, gepaart mit ein paar heilenden Worten, kann in nur wenigen Tagen leicht erlernt werden.

Retrieval-Augmented Generation (RAG) ist eine Technik, die Retrieval nutzt, um Sprachmodelle zu verbessern. Bevor ein Sprachmodell eine Antwort generiert, ruft es insbesondere relevante Informationen aus einer umfangreichen Dokumentendatenbank ab und verwendet diese Informationen dann zur Steuerung des Generierungsprozesses. Diese Technologie kann die Genauigkeit und Relevanz von Inhalten erheblich verbessern, das Problem der Halluzinationen wirksam lindern, die Geschwindigkeit der Wissensaktualisierung erhöhen und die Nachverfolgbarkeit der Inhaltsgenerierung verbessern. RAG ist zweifellos einer der spannendsten Bereiche der Forschung im Bereich der künstlichen Intelligenz. Weitere Informationen zu RAG finden Sie im Kolumnenartikel auf dieser Website „Was sind die neuen Entwicklungen bei RAG, das sich darauf spezialisiert hat, die Mängel großer Modelle auszugleichen?“ Diese Rezension erklärt es deutlich. Aber RAG ist nicht perfekt und Benutzer stoßen bei der Verwendung oft auf einige „Problempunkte“. Kürzlich die fortschrittliche generative KI-Lösung von NVIDIA

Apples neueste Versionen der iOS18-, iPadOS18- und macOS Sequoia-Systeme haben der Fotoanwendung eine wichtige Funktion hinzugefügt, die Benutzern dabei helfen soll, aus verschiedenen Gründen verlorene oder beschädigte Fotos und Videos einfach wiederherzustellen. Mit der neuen Funktion wird im Abschnitt „Extras“ der Fotos-App ein Album mit dem Namen „Wiederhergestellt“ eingeführt, das automatisch angezeigt wird, wenn ein Benutzer Bilder oder Videos auf seinem Gerät hat, die nicht Teil seiner Fotobibliothek sind. Das Aufkommen des Albums „Wiederhergestellt“ bietet eine Lösung für Fotos und Videos, die aufgrund einer Datenbankbeschädigung verloren gehen, die Kameraanwendung nicht korrekt in der Fotobibliothek speichert oder eine Drittanbieteranwendung die Fotobibliothek verwaltet. Benutzer benötigen nur wenige einfache Schritte

So verwenden Sie MySQLi zum Herstellen einer Datenbankverbindung in PHP: MySQLi-Erweiterung einbinden (require_once) Verbindungsfunktion erstellen (functionconnect_to_db) Verbindungsfunktion aufrufen ($conn=connect_to_db()) Abfrage ausführen ($result=$conn->query()) Schließen Verbindung ( $conn->close())

Um Datenbankverbindungsfehler in PHP zu behandeln, können Sie die folgenden Schritte ausführen: Verwenden Sie mysqli_connect_errno(), um den Fehlercode abzurufen. Verwenden Sie mysqli_connect_error(), um die Fehlermeldung abzurufen. Durch die Erfassung und Protokollierung dieser Fehlermeldungen können Datenbankverbindungsprobleme leicht identifiziert und behoben werden, wodurch der reibungslose Betrieb Ihrer Anwendung gewährleistet wird.
