数据存储方案评估标准RDBMSorKV
本文主要介绍常见的数据存储方案及相应选型的评估标准的介绍。 Guideline:针对不同应用场景,针对性选择存储方式。 1. 数据存储方案 SQL: MySQL 5.5/5.6/MariaDB(对于Dev绝大多数场景下透明);Oracle|MS SQL暂不考虑; NoSQL: Memcached 1.4.21;Redis 2.
<span style="font-family: Arial, Verdana, sans-serif;">本文主要介绍常见的数据存储方案及相应选型的评估标准的介绍。</span>
Guideline:针对不同应用场景,针对性选择存储方式。
1. 数据存储方案
SQL:MySQL 5.5/5.6/MariaDB(对于Dev绝大多数场景下透明); Oracle|MS SQL暂不考虑;
Memcached 1.4.21; Redis 2.8; MongoDB 2.6.6; Hbase 0.96/0.98;
2. 评估标准
RDBMS:(MySQL):要求数据持久化存储;用户提交数据就不能丢失;
要求事务保证;
应用复杂,数据结构复杂,数据一致性要求高;
分布式实现时复杂度高,分库分表代价较大。
适合需要严格事务保证的OLTP类系统和MIS类系统;
典型场景:
以电商网站为例, 所有后端子系统(比如ERP,物流,财务,仓储,人事,VIS等); 网站核心数据存储(比如用户,商品,库存,购物车,订单);
KV(Memcache/Redis):
数据结构简单;只是按照简单的Key来查询和update记录;数据不需要持久化存储(persistent on disk), 是secondary data;一般不是用户直接写入;(比如由后端job生成,可以由应用实现双写)
不需要transaction事务支持;
可能有很高的QPS/TPS(for example, 10k+ query/transaction per second);
有非常高的响应速度要求(<1ms typically),以redis为例,同机房操作一般都是几十微秒级别;
典型场景:
各类计数器; 各类cache层(商品列表页,各类配置信息,商品描述信息等);
Analytics Platform:
Hadoop:ETL;科学分析; GP:BI分析;各类报表; Hbase:在线系统;OLAP分析; DocDB:应用相对简单,数据结构相对复杂,支持快速开发,非事务类处理的信息处理系统。如知识问答、社区等;
3. 性能优化
已有系统碰到性能瓶颈时,优化次序依次为:
容量评估性能优化(系统优化,代码逻辑优化,SQL优化)
硬件升级(从低端硬件到高端硬件,从低端存储到高端存储)
垂直拆分(按照不同的模块拆分数据库)
水平拆分(对某个模块,在系统里面再也跑不动,就需要对该模块按照主键或者其他逻辑拆分)

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

DDREASE ist ein Tool zum Wiederherstellen von Daten von Datei- oder Blockgeräten wie Festplatten, SSDs, RAM-Disks, CDs, DVDs und USB-Speichergeräten. Es kopiert Daten von einem Blockgerät auf ein anderes, wobei beschädigte Blöcke zurückbleiben und nur gute Blöcke verschoben werden. ddreasue ist ein leistungsstarkes Wiederherstellungstool, das vollständig automatisiert ist, da es während der Wiederherstellungsvorgänge keine Unterbrechungen erfordert. Darüber hinaus kann es dank der ddasue-Map-Datei jederzeit gestoppt und fortgesetzt werden. Weitere wichtige Funktionen von DDREASE sind: Es überschreibt die wiederhergestellten Daten nicht, füllt aber die Lücken im Falle einer iterativen Wiederherstellung. Es kann jedoch gekürzt werden, wenn das Tool explizit dazu aufgefordert wird. Stellen Sie Daten aus mehreren Dateien oder Blöcken in einer einzigen wieder her

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Diese Website berichtete am 7. März, dass Dr. Zhou Yuefeng, Präsident der Datenspeicherproduktlinie von Huawei, kürzlich an der MWC2024-Konferenz teilgenommen und speziell die magnetoelektrische Speicherlösung OceanStorArctic der neuen Generation vorgestellt hat, die für warme Daten (WarmData) und kalte Daten (ColdData) entwickelt wurde. Zhou Yuefeng, Präsident der Datenspeicherproduktlinie von Huawei, hat eine Reihe innovativer Lösungen veröffentlicht: Die dieser Website beigefügte offizielle Pressemitteilung von Huawei lautet wie folgt: Die Kosten dieser Lösung sind 20 % niedriger als die von Magnetbändern Der Stromverbrauch ist 90 % niedriger als der von Festplatten. Laut Foreign Technology Media BlocksandFiles gab ein Huawei-Sprecher auch Informationen über die magnetoelektrische Speicherlösung preis: Huaweis magnetoelektronische Disk (MED) sei eine bedeutende Innovation bei magnetischen Speichermedien. ME der ersten Generation

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

Diese Woche gab FigureAI, ein Robotikunternehmen, an dem OpenAI, Microsoft, Bezos und Nvidia beteiligt sind, bekannt, dass es fast 700 Millionen US-Dollar an Finanzmitteln erhalten hat und plant, im nächsten Jahr einen humanoiden Roboter zu entwickeln, der selbstständig gehen kann. Und Teslas Optimus Prime hat immer wieder gute Nachrichten erhalten. Niemand zweifelt daran, dass dieses Jahr das Jahr sein wird, in dem humanoide Roboter explodieren. SanctuaryAI, ein in Kanada ansässiges Robotikunternehmen, hat kürzlich einen neuen humanoiden Roboter auf den Markt gebracht: Phoenix. Beamte behaupten, dass es viele Aufgaben autonom und mit der gleichen Geschwindigkeit wie Menschen erledigen kann. Pheonix, der weltweit erste Roboter, der Aufgaben autonom in menschlicher Geschwindigkeit erledigen kann, kann jedes Objekt sanft greifen, bewegen und elegant auf der linken und rechten Seite platzieren. Es kann Objekte autonom identifizieren
