Heim > Datenbank > MySQL-Tutorial > 项目中我为什么用Mongodb取代Mysql

项目中我为什么用Mongodb取代Mysql

WBOY
Freigeben: 2016-06-07 16:19:30
Original
1203 Leute haben es durchsucht

在项目设计的初期,我当时有了这样的想法,同时也是在满足下面几个条件的情况下来选择最终的nosql方案的: 1、需求变化频繁:开发要更加敏捷,开发成本和维护成本要更低,要能够快速地更新进化,新功能要在最短的周期内上线。 2、客户端/api支持,因为这直接

   在项目设计的初期,我当时有了这样的想法,同时也是在满足下面几个条件的情况下来选择最终的nosql方案的:

  1、需求变化频繁:开发要更加敏捷,开发成本和维护成本要更低,要能够快速地更新进化,新功能要在最短的周期内上线。

  2、客户端/api支持,因为这直接影响开发效率

  3、部署简单

  4、扩展能力强

  5、节省系统资源,对cpu等资源耗费较小

  满足这些要求的nosql方案,就剩下了mongodb和redis了,对于redis,我并不是说他不好,而是有一个重要原因,我们的项目的数据处理格式都是采用JSON的形式来处理的,这一点对于后来两者之间的选择,起到了决定性作用。

  当然,Redis对丰富数据类型的操作很吸引人,可以轻松解决一些应用场景,其读写性能也相当高,之前的版本是存储和内存挂钩是挂钩的,这样如果存储大量的数据需要消耗太多的内存,当然现在的版本已经么有这样的问题了。

  MongoDB是一个面向文档的数据库,目前由10gen开发并维护,,它的功能丰富,齐全,完全可以替代MySQL。

  在我项目实施的过程中,我总结了mongodb的一些很好的亮点:

  为什么MongoDB可以替代MySQL?

  1、使用JSON风格语法,易于掌握和理解:MongoDB使用JSON的变种BSON作为内部存储的格式和语法。针对MongoDB的操作都使用JSON风格语法,客户端提交或接收的数据都使用JSON形式来展现。相对于SQL来说,更加直观,容易理解和掌握。这也是根据我自己项目的情况出发,最后选择了mongodb的一个原因。

  2、Schema-less,支持嵌入子文档:MongoDB是一个Schema-free的文档数据库。一个数据库可以有多个Collection,每个Collection是Documents的集合。Collection和Document和传统数据库的Table和Row并不对等。无需事先定义Collection,随时可以创建。Collection中可以包含具有不同schema的文档记录。 这意味着,你上一条记录中的文档有3个属性,而下一条记录的文档可以有10个属性,属性的类型既可以是基本的数据类型(如数字、字符串、日期等),也可以是数组或者散列,甚至还可以是一个子文档(embed document)。这样,可以实现逆规范化(denormalizing)的数据模型,提高查询的速度。

  3、简单易用的查询方式:直接使用JSON,支持范围查询、正则表达式查询。

  4、CRUD更加简单,支持in-place update:只要定义一个数组,然后传递给MongoDB的insert/update方法就可自动插入或更新;对于更新模式,MongoDB支持一个upsert选项,即:“如果记录存在那么更新,否则插入”。MongoDB的update方法还支持Modifier,通过Modifier可实现在服务端即时更新,省去客户端和服务端的通讯。这些modifer可以让MongoDB具有和Redis、Memcached等KV类似的功能:较之MySQL,MonoDB更加简单快速。Modifier也是MongoDB可以作为对用户行为跟踪的容器。在实际中使用Modifier来将用户的交互行为快速保存到MongoDB中以便后期进行统计分析和个性化定制

  5、所有的属性类型都支持索引,甚至数组:这可以让某些任务实现起来非常的轻松。在MongoDB中,“_id”属性是主键,默认MongoDB会对_id创建一个唯一索引。

  6、性能高效,速度快: MongoDB使用c++/boost编写,在多数场合,其查询速度对比MySQL要快的多,对于CPU占用非常小。部署也很简单,对大多数系统,只需下载后二进制包解压就可以直接运行,几乎是零配置。

  7、服务端脚本和Map/Reduce:MongoDB允许在服务端执行脚本,可以用Javascript编写某个函数,直接在服务端执行,也可以把函数的定义存储在服务端,下次直接调用即可。MongoDB不支持事务级别的锁定,对于某些需要自定义的“原子性”操作,可以使用Server side脚本来实现,此时整个MongoDB处于锁定状态。Map/Reduce也是MongoDB中比较吸引人的特性。Map/Reduce可以对大数据量的表进行统计、分类、合并的工作,完成原先SQL的GroupBy等聚合函数的功能。并且Mapper和Reducer的定义都是用Javascript来定义服务端脚本。

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage