MySQL数据汇总与集聚函数MySQL系列(七)
MySQL数据汇总与聚集函数——MySQL系列(七) 1、聚集函数 聚集函数是运行在行组上,计算和返回单个的函数。 SQL聚集函数 函数 说明 AVG() 返回某列的平均 COUNT() 返回某列的行数 MAX() 返回某列的最大 MIN() 返回某列的最小 SUM() 返回某个列之和 (1)、AV
MySQL数据汇总与聚集函数——MySQL系列(七)1、聚集函数
聚集函数是运行在行组上,计算和返回单个值的函数。
函数 | 说明 |
---|---|
AVG() | 返回某列的平均值 |
COUNT() | 返回某列的行数 |
MAX() | 返回某列的最大值 |
MIN() | 返回某列的最小值 |
SUM() | 返回某个列之和 |
(1)、AVG()函数
可以返回所有列的平均值,也可以返回特定列的平均值。SELECT AVG(prd_price) AS avg_price FROM products Where vend_id=1003;
将过滤出vend_id=1003的产品,avg是这些产品的平均值.
(2)、COUNT()函数
COUNT(*)对表中行的数目进行计数,不管表列中包含的是空(NULL)还是非空值; COUNT(column)对特定列中有值的行进行计算,忽略NULL值。(3)、MAX()函数
MAX()返回指定列的最大值,要求指定列名,忽略NULL值。 在MySQL中,MAX()函数可以对非数据列使用,在用于文本数据时,如果数据按相应的列排序,MAX()返回最后一行。(4)、MIN()函数
MIN()返回指定列的最小值,要求指定列名,忽略NULL值。在MySQL中,MIN()函数可以对非数据列使用,在用于文本数据时,如果数据按相应的列排序,MIN()返回最前面的一行。
(5)、SUM()函数
用来返回指定列的和(总计),忽略NULL值的行。SELECT SUM(num) AS prod_sum---返回指定订单号中的商品数量 FROM products Where order_id=123456;
SELECT SUM(item_price*num) AS totol_price FROM order_items--返回订单中所有商品价格和。 Where order_id=123456;
2、聚集不同值
DISTINCT关键字 如下面的SQL将返回vend_id=1003的不同价格商品的平均值SELECT AVG(DISTINCT prd_price) AS avg_price FROM products Where vend_id=1003;
3、组合聚集函数
聚集函数可以组合使用SELECT count(*) AS num, MIN(prod_price) AS price_min, MAX(prod_price) AS price_max, AVG(prod_price) AS price_avg FROM products;

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Die Hauptgründe, warum Sie sich bei MySQL nicht als Root anmelden können, sind Berechtigungsprobleme, Konfigurationsdateifehler, Kennwort inkonsistent, Socket -Dateiprobleme oder Firewall -Interception. Die Lösung umfasst: Überprüfen Sie, ob der Parameter Bind-Address in der Konfigurationsdatei korrekt konfiguriert ist. Überprüfen Sie, ob die Root -Benutzerberechtigungen geändert oder gelöscht und zurückgesetzt wurden. Stellen Sie sicher, dass das Passwort korrekt ist, einschließlich Fall- und Sonderzeichen. Überprüfen Sie die Einstellungen und Pfade der Socket -Dateiberechtigte. Überprüfen Sie, ob die Firewall Verbindungen zum MySQL -Server blockiert.

Wenn MySQL -Modifys -Tabellenstruktur verwendet werden, werden normalerweise Metadatenverriegelungen verwendet, wodurch die Tabelle gesperrt wird. Um die Auswirkungen von Schlösser zu verringern, können die folgenden Maßnahmen ergriffen werden: 1. Halten Sie Tabellen mit Online -DDL verfügbar; 2. Führen Sie komplexe Modifikationen in Chargen durch; 3.. Arbeiten während kleiner oder absendlicher Perioden; 4. Verwenden Sie PT-OSC-Tools, um eine feinere Kontrolle zu erreichen.

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

MySQL kann nicht direkt auf Android ausgeführt werden, kann jedoch indirekt mit den folgenden Methoden implementiert werden: Die Verwendung der Leichtgewichtsdatenbank SQLite, die auf dem Android -System basiert, benötigt keinen separaten Server und verfügt über eine kleine Ressourcennutzung, die für Anwendungen für Mobilgeräte sehr geeignet ist. Stellen Sie sich remote eine Verbindung zum MySQL -Server her und stellen Sie über das Netzwerk zum Lesen und Schreiben von Daten über das Netzwerk eine Verbindung zur MySQL -Datenbank auf dem Remote -Server her. Es gibt jedoch Nachteile wie starke Netzwerkabhängigkeiten, Sicherheitsprobleme und Serverkosten.

MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Vereinfachung der Datenintegration: AmazonRDSMYSQL und Redshifts Null ETL-Integration Die effiziente Datenintegration steht im Mittelpunkt einer datengesteuerten Organisation. Herkömmliche ETL-Prozesse (Extrakt, Konvertierung, Last) sind komplex und zeitaufwändig, insbesondere bei der Integration von Datenbanken (wie AmazonRDSMysQL) in Data Warehouses (wie Rotverschiebung). AWS bietet jedoch keine ETL-Integrationslösungen, die diese Situation vollständig verändert haben und eine vereinfachte Lösung für die Datenmigration von RDSMysQL zu Rotverschiebung bietet. Dieser Artikel wird in die Integration von RDSMYSQL Null ETL mit RedShift eintauchen und erklärt, wie es funktioniert und welche Vorteile es Dateningenieuren und Entwicklern bringt.

1. Verwenden Sie den richtigen Index, um das Abrufen von Daten zu beschleunigen, indem die Menge der skanierten Datenmenge ausgewählt wird. Wenn Sie mehrmals eine Spalte einer Tabelle nachschlagen, erstellen Sie einen Index für diese Spalte. Wenn Sie oder Ihre App Daten aus mehreren Spalten gemäß den Kriterien benötigen, erstellen Sie einen zusammengesetzten Index 2. Vermeiden Sie aus. Auswählen * Nur die erforderlichen Spalten. Wenn Sie alle unerwünschten Spalten auswählen, konsumiert dies nur mehr Serverspeicher und veranlasst den Server bei hoher Last oder Frequenzzeiten, beispielsweise die Auswahl Ihrer Tabelle, wie beispielsweise die Spalten wie innovata und updated_at und Zeitsteuer und dann zu entfernen.
