Heim Datenbank MySQL-Tutorial HBase入门5(集群) -压力分载与失效转发

HBase入门5(集群) -压力分载与失效转发

Jun 07, 2016 pm 04:26 PM
hbase 入门 um 失效 Nach vorne 集群

在上一篇关于HBase的文章中曾经讲述过HBase在分布式中的架构,这篇文章将会讲述HBase在分布式环境中是如何排除单点故障的(SPFO),做一个小实验讲述HBase在分布式环境中的高可用性,亲眼看到一些现象,延伸一些思考的话题。 先来回顾一下HBase主要部件: 1.HB

在上一篇关于HBase的文章中曾经讲述过HBase在分布式中的架构,这篇文章将会讲述HBase在分布式环境中是如何排除单点故障的(SPFO),做一个小实验讲述HBase在分布式环境中的高可用性,亲眼看到一些现象,延伸一些思考的话题。

先来回顾一下HBase主要部件:
   1.HBaseMaster 
   2.HRegionServer
   3.HBase Client
   4.HBase Thrift Server
   5.HBase REST Server

HBaseMaster
    HMaster 负责给HRegionServer分配区域,并且负责对集群环境中的HReginServer进行负载均衡,HMaster还负责监控集群环境中的HReginServer的运行状况,如果某一台HReginServer down机,HBaseMaster将会把不可用的HReginServer来提供服务的HLog和表进行重新分配转交给其他HReginServer来提供,HBaseMaster还负责对数据和表进行管理,处理表结构和表中数据的变更,因为在 META 系统表中存储了所有的相关表信息。并且HMaster实现了ZooKeeper的Watcher接口可以和zookeeper集群交互。

HRegionServer
    HReginServer负责处理用户的读和写的操作。HReginServer通过与HBaseMaster通信获取自己需要服务的数据表,并向HMaster反馈自己的运行状况。当一个写的请求到来的时候,它首先会写到一个叫做HLog的write-ahead log中。HLog被缓存在内存中,称为Memcache,每一个HStore只能有一个Memcache。当Memcache到达配置的大小以后,将会创建一个MapFile,将其写到磁盘中去。这将减少HReginServer的内存压力。当一起读取的请求到来的时候,HReginServer会先在Memcache中寻找该数据,当找不到的时候,才会去在MapFiles 中寻找。

HBase Client
    HBase Client负责寻找提供需求数据的HReginServer。在这个过程中,HBase Client将首先与HMaster通信,找到ROOT区域。这个操作是Client和Master之间仅有的通信操作。一旦ROOT区域被找到以后,Client就可以通过扫描ROOT区域找到相应的META区域去定位实际提供数据的HReginServer。当定位到提供数据的HReginServer以后,Client就可以通过这个HReginServer找到需要的数据了。这些信息将会被Client缓存起来,当下次请求的时候,就不需要走上面的这个流程了。

HBase服务接口
    HBase Thrift Server和HBase REST Server是通过非Java程序对HBase进行访问的一种途径。
 

进入正题

先来看一个HBase集群的模拟环境,此环境中一共有4台机器,分别包含 zookeeper、HBaseMaster、HReginServer、HDSF 4个服务,为了展示失效转发的效果HBaseMaster、HReginServer各有2台,只是在一台机器上即运行了HBaseMaster,也运行了HReginServer。
注意,HBase的集群环境中HBaseMaster只有失效转发没有压力分载的功能,而HReginServer即提供失效转发也提供压力分载。

服务器清单如下:
    1、zookeeper               192.168.20.214
    2、HBaseMaster         192.168.20.213/192.168.20.215
    3、HReginServer         192.168.20.213/192.168.20.215
    4、HDSF                         192.168.20.212

整个模拟环境的架构如图所示:
HBase Cluster

注意,这里只是做了一个模拟环境,因为这个环境的重点是HBase,所以zookeeper和HDFS服务都是单台。

虽然说在整个HBase的集群环境中只能有一个HMaster,可是在集群环境中HMaster可以启动多个,但真正使用到的HMaster Server只有一个,他不down掉的时候,其他启动的HMaster Server并不会工作,直到与ZooKeeper服务器判断与当前运行的HMaster通讯超时,认为这个正在运行的HMaster服务器down掉了,Zookeeper才会去连接下一台HMaster Server。

简单来说,如果运行中HMaster服务器down掉了,那么zookeeper会从列表中选择下一个HMaster 服务器进行访问,让他接管down掉的HMaster任务,换而言之,用Java客户端对HBase进行操作是通过ZooKeeper的,也就是说如果zookeeper集群中的节点全挂了 那么HBase的集群也挂了。本身HBase并不存储中的任何数据 真正的数据是保存在HDFS上,所以HBase的数据是一致的,但是HDFS文件系统挂了,HBase的集群也挂。

在一台HMaster失败后,客户端对HBase集群环境访问时,客户端先会通过zookeeper识别到HMaster运行异常,直到确认多次后,才连接到下一个HMaster,此时,备份的HMaster服务才生效,在IDE环境中的效果,如图所示:

HBase

上图中能看见抛出的一些异常和name:javahttp://www.javabloger.com和name:javahttp://www.javabloger.com1的结果集,因为我在serv215机器上用killall java命令把 HMaster和HReginServer都关掉,并且立刻用Java客户端对HBase的集群环境进行访问有异常抛出,但是retry到一定次数后查询出结果,前面已经说了访问HBase是通过zookeeper再和真正的数据打交道,也就是说zookeeper接管了一个standby 的 HMaster,让原先Standby的HMaster接替了失效的HMaster任务,而被接管的HBaseMaster再对HReginServer的任务进行分配,当 HReginServer失败后zookeeper会通知 HMaster对HReginServer的任务进行分配。这样充分的说明了HBase做到了实效转发的功能。
如图所示:
HBase
 

口水:
1、HBase的失效转发的效率比较慢了,不指望能在1-2秒切换和恢复完毕,也许是我暂时没有发现有什么参数可以提高失效转发和恢复过程的速度,将来会继续关注这个问题。
2、在官方网站上看见HBase0.89.20100924的版本有篇讲述关于数据同步的文章,我尝试了一下在一台机器上可以运行所谓的HBase虚拟集群环境,但是切换到多台机器的分布式环境中,单点失效转发的速度很慢比HBase0.20.6还要慢,我又检查了是否存在网络的问题,目前尚未找到正确的答案,对与HBase0.89.20100924 新版中的数据同步的原理,如图所示:(更多信息)


可以留言或者发邮件与我交流,我的联系方式是:njthnet  # gmail.com

相关文章:
 HBase入门篇4
 HBase入门篇3
 HBase入门篇2
 HBase入门篇
 Hive入门3–Hive与HBase的整合

–end–
 

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So leiten Sie WeChat-Sprachnachrichten weiter. So leiten Sie WeChat-Sprachnachrichten weiter So leiten Sie WeChat-Sprachnachrichten weiter. So leiten Sie WeChat-Sprachnachrichten weiter Feb 22, 2024 pm 05:30 PM

Wandeln Sie Ihre Stimme einfach in Notizen um und senden Sie sie an andere. Tutorial Anwendbares Modell: iPhone13 System: iOS15.5 Version: WeChat 8.0.7 Analyse 1 Fügen Sie zuerst die Sprachnachricht zur Sammlung hinzu und öffnen Sie dann die Stimme auf der Sammlungsseite. 2 Klicken Sie auf die drei Punkte in der oberen rechten Ecke der Sprachoberfläche. 3 Klicken Sie dann in der Liste unten auf Als Notizen speichern. 4Klicken Sie abschließend auf der Notizoberfläche auf „An Freunde senden“. Ergänzung: So konvertieren Sie WeChat-Sprache in Text 1. Drücken Sie zunächst lange auf der WeChat-Chat-Oberfläche auf die Stimme, die Sie konvertieren möchten. 2 Klicken Sie dann im Popup-Fenster auf „In Text konvertieren“. 3Abschließend wird die Stimme in Text umgewandelt. Zusammenfassung/Notizen WeChat-Sprachnachrichten können nicht direkt weitergeleitet werden und müssen zunächst in Notizen umgewandelt werden.

Ein Diffusionsmodell-Tutorial, das Ihre Zeit wert ist, von der Purdue University Ein Diffusionsmodell-Tutorial, das Ihre Zeit wert ist, von der Purdue University Apr 07, 2024 am 09:01 AM

Diffusion kann nicht nur besser imitieren, sondern auch „erschaffen“. Das Diffusionsmodell (DiffusionModel) ist ein Bilderzeugungsmodell. Im Vergleich zu bekannten Algorithmen wie GAN und VAE im Bereich der KI verfolgt das Diffusionsmodell einen anderen Ansatz. Seine Hauptidee besteht darin, dem Bild zunächst Rauschen hinzuzufügen und es dann schrittweise zu entrauschen. Das Entrauschen und Wiederherstellen des Originalbilds ist der Kernbestandteil des Algorithmus. Der endgültige Algorithmus ist in der Lage, aus einem zufälligen verrauschten Bild ein Bild zu erzeugen. In den letzten Jahren hat das phänomenale Wachstum der generativen KI viele spannende Anwendungen in der Text-zu-Bild-Generierung, Videogenerierung und mehr ermöglicht. Das Grundprinzip dieser generativen Werkzeuge ist das Konzept der Diffusion, ein spezieller Sampling-Mechanismus, der die Einschränkungen bisheriger Methoden überwindet.

Wie leitet man WeChat-Stimmen weiter? So leiten Sie WeChat-Stimmen weiter Wie leitet man WeChat-Stimmen weiter? So leiten Sie WeChat-Stimmen weiter Mar 07, 2024 am 09:00 AM

WeChat unterstützt als funktionsreiche soziale Software eine Vielzahl von Kommunikationsmethoden, darunter Text, Sprache und Video. Unter anderem bieten Sprachnachrichten Benutzern eine bequeme Möglichkeit zur Kommunikation. Allerdings unterstützt WeChat die direkte Weiterleitung von Sprachnachrichten nicht nativ. Dies kann jedoch auch durch andere Methoden erreicht werden. Es gibt viele Möglichkeiten, die WeChat-Sprache weiterzuleiten. Es stehen die folgenden zwei gängigen Methoden zur Verfügung: beispielsweise die Weiterleitung von Favoriten oder die Weiterleitung von Bildschirmaufzeichnungen. Wie leitet man WeChat-Stimmen weiter? Methode zum Weiterleiten von WeChat-Sprachnachrichten Die erste Methode besteht darin, als Favorit weiterzuleiten. 1. Halten Sie die WeChat-Sprachnachricht gedrückt, die weitergeleitet werden soll, bis ein Mehrfachauswahlmenü angezeigt wird. 2. Markieren Sie die Sprachnachrichten, die weitergeleitet werden müssen, und klicken Sie dann unten auf dem Bildschirm auf die Schaltfläche [Sammeln]. 3. Rufen Sie die WeChat-Seite [Ich] auf, klicken Sie auf die Option [Sammeln] und suchen Sie nach der Sprachnachricht, die Sie gerade gesammelt haben. 4. Klicken Sie auf Sprachabbruch

Generieren Sie PPT mit einem Klick! Kimi: Lassen Sie zuerst die „PPT-Wanderarbeiter' populär werden Generieren Sie PPT mit einem Klick! Kimi: Lassen Sie zuerst die „PPT-Wanderarbeiter' populär werden Aug 01, 2024 pm 03:28 PM

Kimi: In nur einem Satz, in nur zehn Sekunden ist ein PPT fertig. PPT ist so nervig! Um ein Meeting abzuhalten, benötigen Sie einen PPT; um einen wöchentlichen Bericht zu schreiben, müssen Sie einen PPT vorlegen, auch wenn Sie jemanden des Betrugs beschuldigen PPT. Das College ähnelt eher dem Studium eines PPT-Hauptfachs. Man schaut sich PPT im Unterricht an und macht PPT nach dem Unterricht. Als Dennis Austin vor 37 Jahren PPT erfand, hatte er vielleicht nicht damit gerechnet, dass PPT eines Tages so weit verbreitet sein würde. Wenn wir über unsere harte Erfahrung bei der Erstellung von PPT sprechen, treiben uns Tränen in die Augen. „Es dauerte drei Monate, ein PPT mit mehr als 20 Seiten zu erstellen, und ich habe es Dutzende Male überarbeitet. Als ich das PPT sah, musste ich mich übergeben.“ war PPT.“ Wenn Sie ein spontanes Meeting haben, sollten Sie es tun

Alle CVPR 2024-Auszeichnungen bekannt gegeben! Fast 10.000 Menschen nahmen offline an der Konferenz teil und ein chinesischer Forscher von Google gewann den Preis für den besten Beitrag Alle CVPR 2024-Auszeichnungen bekannt gegeben! Fast 10.000 Menschen nahmen offline an der Konferenz teil und ein chinesischer Forscher von Google gewann den Preis für den besten Beitrag Jun 20, 2024 pm 05:43 PM

Am frühen Morgen des 20. Juni (Pekinger Zeit) gab CVPR2024, die wichtigste internationale Computer-Vision-Konferenz in Seattle, offiziell die besten Beiträge und andere Auszeichnungen bekannt. In diesem Jahr wurden insgesamt 10 Arbeiten ausgezeichnet, darunter zwei beste Arbeiten und zwei beste studentische Arbeiten. Darüber hinaus gab es zwei Nominierungen für die beste Arbeit und vier Nominierungen für die beste studentische Arbeit. Die Top-Konferenz im Bereich Computer Vision (CV) ist die CVPR, die jedes Jahr zahlreiche Forschungseinrichtungen und Universitäten anzieht. Laut Statistik wurden in diesem Jahr insgesamt 11.532 Arbeiten eingereicht, von denen 2.719 angenommen wurden, was einer Annahmequote von 23,6 % entspricht. Laut der statistischen Analyse der CVPR2024-Daten des Georgia Institute of Technology befassen sich die meisten Arbeiten aus Sicht der Forschungsthemen mit der Bild- und Videosynthese und -generierung (Imageandvideosyn

Fünf Programmiersoftware für den Einstieg in das Erlernen der C-Sprache Fünf Programmiersoftware für den Einstieg in das Erlernen der C-Sprache Feb 19, 2024 pm 04:51 PM

Als weit verbreitete Programmiersprache ist die C-Sprache eine der grundlegenden Sprachen, die für diejenigen erlernt werden müssen, die sich mit Computerprogrammierung befassen möchten. Für Anfänger kann das Erlernen einer neuen Programmiersprache jedoch etwas schwierig sein, insbesondere aufgrund des Mangels an entsprechenden Lernwerkzeugen und Lehrmaterialien. In diesem Artikel werde ich fünf Programmiersoftware vorstellen, die Anfängern den Einstieg in die C-Sprache erleichtert und Ihnen einen schnellen Einstieg ermöglicht. Die erste Programmiersoftware war Code::Blocks. Code::Blocks ist eine kostenlose integrierte Open-Source-Entwicklungsumgebung (IDE) für

Von Bare-Metal bis hin zu einem großen Modell mit 70 Milliarden Parametern finden Sie hier ein Tutorial und gebrauchsfertige Skripte Von Bare-Metal bis hin zu einem großen Modell mit 70 Milliarden Parametern finden Sie hier ein Tutorial und gebrauchsfertige Skripte Jul 24, 2024 pm 08:13 PM

Wir wissen, dass LLM auf großen Computerclustern unter Verwendung umfangreicher Daten trainiert wird. Auf dieser Website wurden viele Methoden und Technologien vorgestellt, die den LLM-Trainingsprozess unterstützen und verbessern. Was wir heute teilen möchten, ist ein Artikel, der tief in die zugrunde liegende Technologie eintaucht und vorstellt, wie man einen Haufen „Bare-Metals“ ohne Betriebssystem in einen Computercluster für das LLM-Training verwandelt. Dieser Artikel stammt von Imbue, einem KI-Startup, das allgemeine Intelligenz durch das Verständnis der Denkweise von Maschinen erreichen möchte. Natürlich ist es kein einfacher Prozess, einen Haufen „Bare Metal“ ohne Betriebssystem in einen Computercluster für das Training von LLM zu verwandeln, aber Imbue hat schließlich erfolgreich ein LLM mit 70 Milliarden Parametern trainiert der Prozess akkumuliert

So spulen Sie auf Weibo vor_Tutorial zum schnellen Vorspulen auf Weibo So spulen Sie auf Weibo vor_Tutorial zum schnellen Vorspulen auf Weibo Mar 30, 2024 pm 03:51 PM

1. Geben Sie zunächst Weibo auf Ihrem Mobiltelefon ein und klicken Sie auf die Empfehlungsoption. 2. Wählen Sie dann Weibo aus und klicken Sie auf das Teilen-Symbol. 3. Klicken Sie dann auf die Option „Schneller Vorlauf“. 4. Abschließend können Sie überprüfen, ob die Weibo-Schnellweiterleitung erfolgreich gesendet wurde.

See all articles