关于 Redis 的几种数据库设计方案的内存占用测试
最近在做一个项目,数据库使用的是 Redis。在设计数据结构时,不知道哪种实现是最优的,于是做了下测试。 测试环境如下: OS X10.8.3 Redis 2.6.12 Python 2.7.4 redis-py 2.7.2 hiredis 0.1.1 ujson 1.30 MessagePack 0.3.0 注意: 因为是拿 Python 测试的
最近在做一个项目,数据库使用的是 Redis。在设计数据结构时,不知道哪种实现是最优的,于是做了下测试。测试环境如下:
OS X10.8.3注意:
Redis 2.6.12
Python 2.7.4
redis-py 2.7.2
hiredis 0.1.1
ujson 1.30
MessagePack 0.3.0
- 因为是拿 Python 测试的,所以可能对其他语言并不完全适用。
- 使用的测试数据是特定的,可能对更小或更大的数据并不完全适用。
测试结果就不列出了,直接说结论吧。
- 最差的存储方式就是用一个 hash 来存储一个实体(即一条记录)。时间上比其他方案慢 1 ~ 2 倍,空间占用较大。
更重要的是拿出来的字段类型是字符串,还得自己转换类型。
唯一的好处就是可以单独操作一个字段。
- 使用 string 类型来存储也是不推荐的,不过稍好于前一种方式。在单个实体较小时,会暴露出 key 占用内存较多的缺点。
- 用一个 hash 来存储一个类型的所有实体(即一张表),在实现上比较简单,内存占用尚可。
- 用多个 hash 来存储一个类型的所有实体(即分表),在实现上稍微复杂点,但占用的内存最小。
如果单个字段值较小(缺省值是 64 字节),单个 hash 存储的字段数不多(缺省值是 512 个)时,会采用 hash zipmap 来存储,内存占用会显著减小。
单个 hash 存储的字段数建议为 2 的次方,例如 1024。略微超过这个值,会导致内存占用和延迟时间都增加。
Instagram 的工程师认为,使用 hash zipmap 时,最佳的字段数为 1000 左右。不过据我测试,基本都是随字段数增加而变慢,而内存占用从 128 直到 1024 的变化基本可以忽略。
- 存储为 JSON 格式是种不错的选择。对包含中文的内容来说,设置 ensure_ascii=False 可以节省大量内存。
ujson 比 json 性能好很多,后者在设置 ensure_ascii=False 后性能急剧下降。
- cPickle 比 ujson 的性能要差,不过支持更多类型(如 datetime)。
- MessagePack 比 ujson 有一点不太明显的性能优势,不过丧失了可读性,且取回 unicode 需要自己 decode。
号称比 Protocol Buffer 快 4 倍应该可以无视了,至少其 Python 库没有明显优势。
- 使用 zlib 压缩可以节省更多内存,不过性能变慢 1 ~ 2 倍。
最后附上测试代码:
# -*- coding: utf-8 -*- import cPickle import json import time import zlib import msgpack import redis import ujson class Timer: def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.interval = self.end - self.start def test(function): def wrapper(*args, **kwargs): args_list = [] if args: args_list.append(','.join((str(arg) for arg in args))) if kwargs: args_list.append(','.join('%s=%s' % (key, value) for key, value in kwargs.iteritems())) print 'call %s(%s):' % (function.func_name, ', '.join(args_list)) redis_client.flushall() print 'memory:', redis_client.info()['used_memory_human'] with Timer() as timer: result = function(*args, **kwargs) print 'time:', timer.interval print 'memory:', redis_client.info()['used_memory_human'] print return result return wrapper redis_client = redis.Redis() pipe = redis_client.pipeline(transaction=False) articles = [{ 'id': i, 'title': u'团结全世界正义力量痛击日本', 'content': u'近期日本社会有四种感觉极度高涨,即二战期间日本军国主义扩张战争的惨败在日本右翼势力内心留下的耻辱感;被美国长期占领和控制的压抑感;经济长期停滞不前的焦虑感;对中国快速崛起引发的失落感。为此,日本为了找到一个发泄口,对中国采取了一系列挑衅行为,我们不能听之任之。现在全国13亿人要万众一心,团结起来,拿出决心、意志和能力,果断实施对等反击。在这场反击日本右翼势力的反攻倒算中,中国不是孤立的,我们要团结全世界一切反法西斯战争的正义力量,痛击日本对国际正义的挑战。', 'source_text': u'环球时报', 'source_url': 'http://opinion.huanqiu.com/column/mjzl/2012-09/3174337.html', 'time': '2012-09-13 09:23', 'is_public': True } for i in xrange(10000)] @test def test_hash(): for article in articles: pipe.hmset('article:%d' % article['id'], article) pipe.execute() @test def test_json_hash(): for article in articles: pipe.hset('article', article['id'], json.dumps(article)) pipe.execute() @test def test_ujson_hash(): for article in articles: pipe.hset('article', article['id'], ujson.dumps(article)) pipe.execute() @test def test_ujson_string(): for article in articles: pipe.set('article:%d' % article['id'], ujson.dumps(article)) pipe.execute() @test def test_zlib_ujson_string(): for article in articles: pipe.set('article:%d' % article['id'], zlib.compress(ujson.dumps(article, ensure_ascii=False))) pipe.execute() @test def test_msgpack(): for article in articles: pipe.hset('article', article['id'], msgpack.packb(article)) pipe.execute() @test def test_pickle_string(): for article in articles: pipe.set('article:%d' % article['id'], cPickle.dumps(article)) pipe.execute() @test def test_json_without_ensure_ascii(): for article in articles: pipe.hset('article', article['id'], json.dumps(article, ensure_ascii=False)) pipe.execute() @test def test_ujson_without_ensure_ascii(): for article in articles: pipe.hset('article', article['id'], ujson.dumps(article, ensure_ascii=False)) pipe.execute() def test_ujson_shard_id(): @test def test_ujson_shard_id_of_size(size): for article in articles: article_id = article['id'] pipe.hset('article:%d' % (article_id / size), article_id % size, ujson.dumps(article, ensure_ascii=False)) pipe.execute() for size in (2, 4, 8, 10, 16, 32, 64, 100, 128, 256, 500, 512, 513, 1000, 1024, 1025, 2048, 4096, 8092): test_ujson_shard_id_of_size(size) test_ujson_shard_id_of_size(512) for key, value in sorted(globals().copy().iteritems(), key=lambda x:x[0]): if key.startswith('test_'): value()
原文地址:关于 Redis 的几种数据库设计方案的内存占用测试, 感谢原作者分享。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Der Redis -Cluster -Modus bietet Redis -Instanzen durch Sharding, die Skalierbarkeit und Verfügbarkeit verbessert. Die Bauschritte sind wie folgt: Erstellen Sie ungerade Redis -Instanzen mit verschiedenen Ports; Erstellen Sie 3 Sentinel -Instanzen, Monitor -Redis -Instanzen und Failover; Konfigurieren von Sentinel -Konfigurationsdateien, Informationen zur Überwachung von Redis -Instanzinformationen und Failover -Einstellungen hinzufügen. Konfigurieren von Redis -Instanzkonfigurationsdateien, aktivieren Sie den Cluster -Modus und geben Sie den Cluster -Informationsdateipfad an. Erstellen Sie die Datei nodes.conf, die Informationen zu jeder Redis -Instanz enthält. Starten Sie den Cluster, führen Sie den Befehl erstellen aus, um einen Cluster zu erstellen und die Anzahl der Replikate anzugeben. Melden Sie sich im Cluster an, um den Befehl cluster info auszuführen, um den Clusterstatus zu überprüfen. machen

So löschen Sie Redis -Daten: Verwenden Sie den Befehl Flushall, um alle Schlüsselwerte zu löschen. Verwenden Sie den Befehl flushdb, um den Schlüsselwert der aktuell ausgewählten Datenbank zu löschen. Verwenden Sie SELECT, um Datenbanken zu wechseln, und löschen Sie dann FlushDB, um mehrere Datenbanken zu löschen. Verwenden Sie den Befehl del, um einen bestimmten Schlüssel zu löschen. Verwenden Sie das Redis-Cli-Tool, um die Daten zu löschen.

MySQL ist ein Open Source Relational Database Management -System, das hauptsächlich zum schnellen und zuverlässigen Speicher und Abrufen von Daten verwendet wird. Sein Arbeitsprinzip umfasst Kundenanfragen, Abfragebedingungen, Ausführung von Abfragen und Rückgabergebnissen. Beispiele für die Nutzung sind das Erstellen von Tabellen, das Einsetzen und Abfragen von Daten sowie erweiterte Funktionen wie Join -Operationen. Häufige Fehler umfassen SQL -Syntax, Datentypen und Berechtigungen sowie Optimierungsvorschläge umfassen die Verwendung von Indizes, optimierte Abfragen und die Partitionierung von Tabellen.

Die Verwendung der REDIS -Anweisung erfordert die folgenden Schritte: Öffnen Sie den Redis -Client. Geben Sie den Befehl ein (Verbschlüsselwert). Bietet die erforderlichen Parameter (variiert von der Anweisung bis zur Anweisung). Drücken Sie die Eingabetaste, um den Befehl auszuführen. Redis gibt eine Antwort zurück, die das Ergebnis der Operation anzeigt (normalerweise in Ordnung oder -err).

MySQL wird für seine Leistung, Zuverlässigkeit, Benutzerfreundlichkeit und Unterstützung der Gemeinschaft ausgewählt. 1.MYSQL bietet effiziente Datenspeicher- und Abruffunktionen, die mehrere Datentypen und erweiterte Abfragevorgänge unterstützen. 2. Übernehmen Sie die Architektur der Client-Server und mehrere Speichermotoren, um die Transaktion und die Abfrageoptimierung zu unterstützen. 3. Einfach zu bedienend unterstützt eine Vielzahl von Betriebssystemen und Programmiersprachen. V.

Um eine Warteschlange aus Redis zu lesen, müssen Sie den Warteschlangenname erhalten, die Elemente mit dem Befehl LPOP lesen und die leere Warteschlange verarbeiten. Die spezifischen Schritte sind wie folgt: Holen Sie sich den Warteschlangenname: Nennen Sie ihn mit dem Präfix von "Warteschlange:" wie "Warteschlangen: My-Queue". Verwenden Sie den Befehl LPOP: Wischen Sie das Element aus dem Kopf der Warteschlange aus und geben Sie seinen Wert zurück, z. B. die LPOP-Warteschlange: my-queue. Verarbeitung leerer Warteschlangen: Wenn die Warteschlange leer ist, gibt LPOP NIL zurück, und Sie können überprüfen, ob die Warteschlange existiert, bevor Sie das Element lesen.

Um die Operationen zu sperren, muss die Sperre durch den Befehl setNX erfasst werden und dann den Befehl Ablauf verwenden, um die Ablaufzeit festzulegen. Die spezifischen Schritte sind: (1) Verwenden Sie den Befehl setNX, um zu versuchen, ein Schlüsselwertpaar festzulegen; (2) Verwenden Sie den Befehl Ablauf, um die Ablaufzeit für die Sperre festzulegen. (3) Verwenden Sie den Befehl Del, um die Sperre zu löschen, wenn die Sperre nicht mehr benötigt wird.

Der beste Weg, um Redis -Quellcode zu verstehen, besteht darin, Schritt für Schritt zu gehen: Machen Sie sich mit den Grundlagen von Redis vertraut. Wählen Sie ein bestimmtes Modul oder eine bestimmte Funktion als Ausgangspunkt. Beginnen Sie mit dem Einstiegspunkt des Moduls oder der Funktion und sehen Sie sich die Codezeile nach Zeile an. Zeigen Sie den Code über die Funktionsaufrufkette an. Kennen Sie die von Redis verwendeten Datenstrukturen. Identifizieren Sie den von Redis verwendeten Algorithmus.
