伪分布式安装部署CDH4.2.1与Impala[原创实践]
参考资料: http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Quick-Start/cdh4qs_topic_3_3.html http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/Installing
参考资料:
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Quick-Start/cdh4qs_topic_3_3.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/Installing-and-Using-Impala.html
http://blog.cloudera.com/blog/2013/02/from-zero-to-impala-in-minutes/
什么是Impala?
Cloudera发布了实时查询开源项目Impala,根据多款产品实测表明,它比原来基于MapReduce的Hive SQL查询速度提升3~90倍。Impala是Google Dremel的模仿,但在SQL功能上青出于蓝胜于蓝。
1. 安装JDK
$ sudo yum install jdk-6u41-linux-amd64.rpm
2. 伪分布式模式安装CDH4
$ cd /etc/yum.repos.d/
$ sudo wget http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/cloudera-cdh4.repo
$ sudo yum install hadoop-conf-pseudo
格式化NameNode.
$ sudo -u hdfs hdfs namenode -format
启动HDFS
$ for x in `cd /etc/init.d ; ls hadoop-hdfs-*` ; do sudo service $x start ; done
创建/tmp目录
$ sudo -u hdfs hadoop fs -rm -r /tmp
$ sudo -u hdfs hadoop fs -mkdir /tmp
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp
创建YARN与日志目录
$ sudo -u hdfs hadoop fs -mkdir /tmp/hadoop-yarn/staging
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp/hadoop-yarn/staging
$ sudo -u hdfs hadoop fs -mkdir /tmp/hadoop-yarn/staging/history/done_intermediate
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp/hadoop-yarn/staging/history/done_intermediate
$ sudo -u hdfs hadoop fs -chown -R mapred:mapred /tmp/hadoop-yarn/staging
$ sudo -u hdfs hadoop fs -mkdir /var/log/hadoop-yarn
$ sudo -u hdfs hadoop fs -chown yarn:mapred /var/log/hadoop-yarn
检查HDFS文件树
$ sudo -u hdfs hadoop fs -ls -R /
drwxrwxrwt - hdfs supergroup 0 2012-05-31 15:31 /tmp drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /tmp/hadoop-yarn drwxrwxrwt - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging drwxr-xr-x - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging/history drwxrwxrwt - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging/history/done_intermediate drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /var drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /var/log drwxr-xr-x - yarn mapred 0 2012-05-31 15:31 /var/log/hadoop-yarn
启动YARN
$ sudo service hadoop-yarn-resourcemanager start
$ sudo service hadoop-yarn-nodemanager start
$ sudo service hadoop-mapreduce-historyserver start
创建用户目录(以用户dong.guo为例):
$ sudo -u hdfs hadoop fs -mkdir /user/dong.guo
$ sudo -u hdfs hadoop fs -chown dong.guo /user/dong.guo
测试上传文件
$ hadoop fs -mkdir input
$ hadoop fs -put /etc/hadoop/conf/*.xml input
$ hadoop fs -ls input
Found 4 items -rw-r--r-- 1 dong.guo supergroup 1461 2013-05-14 03:30 input/core-site.xml -rw-r--r-- 1 dong.guo supergroup 1854 2013-05-14 03:30 input/hdfs-site.xml -rw-r--r-- 1 dong.guo supergroup 1325 2013-05-14 03:30 input/mapred-site.xml -rw-r--r-- 1 dong.guo supergroup 2262 2013-05-14 03:30 input/yarn-site.xml
配置HADOOP_MAPRED_HOME环境变量
$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce
运行一个测试Job
$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar grep input output23 'dfs[a-z.]+'
Job完成后,可以看到以下目录
$ hadoop fs -ls
Found 2 items drwxr-xr-x - dong.guo supergroup 0 2013-05-14 03:30 input drwxr-xr-x - dong.guo supergroup 0 2013-05-14 03:32 output23
$ hadoop fs -ls output23
Found 2 items -rw-r--r-- 1 dong.guo supergroup 0 2013-05-14 03:32 output23/_SUCCESS -rw-r--r-- 1 dong.guo supergroup 150 2013-05-14 03:32 output23/part-r-00000
$ hadoop fs -cat output23/part-r-00000 | head
1 dfs.safemode.min.datanodes 1 dfs.safemode.extension 1 dfs.replication 1 dfs.namenode.name.dir 1 dfs.namenode.checkpoint.dir 1 dfs.datanode.data.dir
3. 安装 Hive
$ sudo yum install hive hive-metastore hive-server
$ sudo yum install mysql-server
$ sudo service mysqld start
$ cd ~
$ wget 'http://cdn.mysql.com/Downloads/Connector-J/mysql-connector-java-5.1.25.tar.gz'
$ tar xzf mysql-connector-java-5.1.25.tar.gz
$ sudo cp mysql-connector-java-5.1.25/mysql-connector-java-5.1.25-bin.jar /usr/lib/hive/lib/
$ sudo /usr/bin/mysql_secure_installation
[...] Enter current password for root (enter for none): OK, successfully used password, moving on... [...] Set root password? [Y/n] y New password:hadoophive Re-enter new password:hadoophive Remove anonymous users? [Y/n] Y [...] Disallow root login remotely? [Y/n] N [...] Remove test database and access to it [Y/n] Y [...] Reload privilege tables now? [Y/n] Y All done!
$ mysql -u root -phadoophive
mysql> CREATE DATABASE metastore; mysql> USE metastore; mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-0.10.0.mysql.sql; mysql> CREATE USER 'hive'@'%' IDENTIFIED BY 'hadoophive'; mysql> CREATE USER 'hive'@'localhost' IDENTIFIED BY 'hadoophive'; mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'%'; mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'localhost'; mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'%'; mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'localhost'; mysql> FLUSH PRIVILEGES; mysql> quit;
$ sudo mv /etc/hive/conf/hive-site.xml /etc/hive/conf/hive-site.xml.bak
$ sudo vim /etc/hive/conf/hive-site.xml
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="http://heylinux.com/archives/configuration.xsl"?> javax.jdo.option.ConnectionURL jdbc:mysql://localhost/metastore the URL of the MySQL database javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver javax.jdo.option.ConnectionUserName hive javax.jdo.option.ConnectionPassword hadoophive datanucleus.autoCreateSchema false datanucleus.fixedDatastore true hive.metastore.uris thrift://127.0.0.1:9083 IP address (or fully-qualified domain name) and port of the metastore host hive.aux.jars.path file:///usr/lib/hive/lib/zookeeper.jar,file:///usr/lib/hive/lib/hbase.jar,file:///usr/lib/hive/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///usr/lib/hive/lib/guava-11.0.2.jar
$ sudo service hive-metastore start
Starting (hive-metastore): [ OK ]
$ sudo service hive-server start
Starting (hive-server): [ OK ]
$ sudo -u hdfs hadoop fs -mkdir /user/hive
$ sudo -u hdfs hadoop fs -chown hive /user/hive
$ sudo -u hdfs hadoop fs -mkdir /tmp
$ sudo -u hdfs hadoop fs -chmod 777 /tmp
$ sudo -u hdfs hadoop fs -chmod o+t /tmp
$ sudo -u hdfs hadoop fs -mkdir /data
$ sudo -u hdfs hadoop fs -chown hdfs /data
$ sudo -u hdfs hadoop fs -chmod 777 /data
$ sudo -u hdfs hadoop fs -chmod o+t /data
$ sudo chown -R hive:hive /var/lib/hive
$ sudo vim /tmp/kv1.txt
1 www.baidu.com 2 www.google.com 3 www.sina.com.cn 4 www.163.com 5 heylinx.com
$ sudo -u hive hive
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties Hive history file=/tmp/root/hive_job_log_root_201305140801_825709760.txt hive> CREATE TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n"; hive> show tables; OK pokes Time taken: 0.415 seconds hive> LOAD DATA LOCAL INPATH '/tmp/kv1.txt' OVERWRITE INTO TABLE pokes; Copying data from file:/tmp/kv1.txt Copying file: file:/tmp/kv1.txt Loading data to table default.pokes rmr: DEPRECATED: Please use 'rm -r' instead. Deleted /user/hive/warehouse/pokes Table default.pokes stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 79, raw_data_size: 0] OK Time taken: 1.681 seconds
$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce
4. 安装 Impala
$ cd /etc/yum.repos.d/
$ sudo wget http://archive.cloudera.com/impala/redhat/6/x86_64/impala/cloudera-impala.repo
$ sudo yum install impala impala-shell
$ sudo yum install impala-server impala-state-store
$ sudo vim /etc/hadoop/conf/hdfs-site.xml
... dfs.client.read.shortcircuit true dfs.domain.socket.path /var/run/hadoop-hdfs/dn._PORT dfs.client.file-block-storage-locations.timeout 3000 dfs.datanode.hdfs-blocks-metadata.enabled true
$ sudo cp -rpa /etc/hadoop/conf/core-site.xml /etc/impala/conf/
$ sudo cp -rpa /etc/hadoop/conf/hdfs-site.xml /etc/impala/conf/
$ sudo service hadoop-hdfs-datanode restart
$ sudo service impala-state-store restart
$ sudo service impala-server restart
$ sudo /usr/java/default/bin/jps
5. 安装 Hbase
$ sudo yum install hbase
$ sudo vim /etc/security/limits.conf
hdfs - nofile 32768 hbase - nofile 32768
$ sudo vim /etc/pam.d/common-session
session required pam_limits.so
$ sudo vim /etc/hadoop/conf/hdfs-site.xml
dfs.datanode.max.xcievers 4096
$ sudo cp /usr/lib/impala/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar /usr/lib/hive/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar
$ sudo /etc/init.d/hadoop-hdfs-namenode restart
$ sudo /etc/init.d/hadoop-hdfs-datanode restart
$ sudo yum install hbase-master
$ sudo service hbase-master start
$ sudo -u hive hive
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties Hive history file=/tmp/hive/hive_job_log_hive_201305140905_2005531704.txt hive> CREATE TABLE hbase_table_1(key int, value string) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val") TBLPROPERTIES ("hbase.table.name" = "xyz"); OK Time taken: 3.587 seconds hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=5; Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks is set to 0 since there's no reduce operator Starting Job = job_1368502088579_0004, Tracking URL = http://ip-10-197-10-4:8088/proxy/application_1368502088579_0004/ Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1368502088579_0004 Hadoop job information for Stage-0: number of mappers: 1; number of reducers: 0 2013-05-14 09:12:45,340 Stage-0 map = 0%, reduce = 0% 2013-05-14 09:12:53,165 Stage-0 map = 100%, reduce = 0%, Cumulative CPU 2.63 sec MapReduce Total cumulative CPU time: 2 seconds 630 msec Ended Job = job_1368502088579_0004 1 Rows loaded to hbase_table_1 MapReduce Jobs Launched: Job 0: Map: 1 Cumulative CPU: 2.63 sec HDFS Read: 288 HDFS Write: 0 SUCCESS Total MapReduce CPU Time Spent: 2 seconds 630 msec OK Time taken: 21.063 seconds hive> select * from hbase_table_1; OK 5 heylinx.com Time taken: 0.685 seconds hive> SELECT COUNT (*) FROM pokes; Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapred.reduce.tasks=<number> Starting Job = job_1368502088579_0005, Tracking URL = http://ip-10-197-10-4:8088/proxy/application_1368502088579_0005/ Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1368502088579_0005 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2013-05-14 10:32:04,711 Stage-1 map = 0%, reduce = 0% 2013-05-14 10:32:11,461 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:12,554 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:13,642 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:14,760 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:15,918 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:16,991 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:18,111 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.22 sec 2013-05-14 10:32:19,188 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.04 sec MapReduce Total cumulative CPU time: 4 seconds 40 msec Ended Job = job_1368502088579_0005 MapReduce Jobs Launched: Job 0: Map: 1 Reduce: 1 Cumulative CPU: 4.04 sec HDFS Read: 288 HDFS Write: 2 SUCCESS Total MapReduce CPU Time Spent: 4 seconds 40 msec OK 5 Time taken: 28.195 seconds </number></number></number>
6. 测试Impala性能
View parameters on http://ec2-204-236-182-78.us-west-1.compute.amazonaws.com:25000
$ impala-shell
[ip-10-197-10-4.us-west-1.compute.internal:21000] > CREATE TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n"; Query: create TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n" [ip-10-197-10-4.us-west-1.compute.internal:21000] > show tables; Query: show tables Query finished, fetching results ... +-------+ | name | +-------+ | pokes | +-------+ Returned 1 row(s) in 0.00s [ip-10-197-10-4.us-west-1.compute.internal:21000] > SELECT * from pokes; Query: select * from pokes Query finished, fetching results ... +-----+-----------------+ | foo | bar | +-----+-----------------+ | 1 | www.baidu.com | | 2 | www.google.com | | 3 | www.sina.com.cn | | 4 | www.163.com | | 5 | heylinx.com | +-----+-----------------+ Returned 5 row(s) in 0.28s [ip-10-197-10-4.us-west-1.compute.internal:21000] > SELECT COUNT (*) from pokes; Query: select COUNT (*) from pokes Query finished, fetching results ... +----------+ | count(*) | +----------+ | 5 | +----------+ Returned 1 row(s) in 0.34s
通过两个COUNT的结果来看,Hive使用了 28.195 seconds 而 Impala仅使用了0.34s,由此可以看出Impala的性能确实要优于Hive。
原文地址:伪分布式安装部署CDH4.2.1与Impala[原创实践], 感谢原作者分享。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für das Problem, dass das Win11-System das chinesische Sprachpaket nicht installieren kann. Mit der Einführung des Windows 11-Systems begannen viele Benutzer, ihr Betriebssystem zu aktualisieren, um neue Funktionen und Schnittstellen zu nutzen. Einige Benutzer stellten jedoch fest, dass sie das chinesische Sprachpaket nach dem Upgrade nicht installieren konnten, was ihre Erfahrung beeinträchtigte. In diesem Artikel besprechen wir die Gründe, warum das Win11-System das chinesische Sprachpaket nicht installieren kann, und stellen einige Lösungen bereit, die Benutzern bei der Lösung dieses Problems helfen. Ursachenanalyse Lassen Sie uns zunächst die Unfähigkeit des Win11-Systems analysieren

Möglicherweise können Sie keine Gastzusätze zu einer virtuellen Maschine in OracleVirtualBox installieren. Wenn wir auf Geräte>InstallGuestAdditionsCDImage klicken, wird einfach ein Fehler wie unten gezeigt ausgegeben: VirtualBox – Fehler: Virtuelles Laufwerk C kann nicht eingefügt werden: DateienOracleVirtualBoxVBoxGuestAdditions.iso in die Ubuntu-Maschine programmieren In diesem Beitrag werden wir verstehen, was passiert, wenn Sie. Was zu tun ist, wenn Sie Gastzusätze können in VirtualBox nicht installiert werden. Gastzusätze können nicht in VirtualBox installiert werden. Wenn Sie es nicht in Virtua installieren können

Wenn Sie die Installationsdatei von Baidu Netdisk erfolgreich heruntergeladen haben, sie aber nicht normal installieren können, liegt möglicherweise ein Fehler in der Integrität der Softwaredatei vor oder es liegt ein Problem mit den verbleibenden Dateien und Registrierungseinträgen vor Lassen Sie uns die Analyse des Problems vorstellen, dass Baidu Netdisk erfolgreich heruntergeladen, aber nicht installiert werden kann. Analyse des Problems, dass Baidu Netdisk erfolgreich heruntergeladen, aber nicht installiert werden konnte 1. Überprüfen Sie die Integrität der Installationsdatei: Stellen Sie sicher, dass die heruntergeladene Installationsdatei vollständig und nicht beschädigt ist. Sie können es erneut herunterladen oder versuchen, die Installationsdatei von einer anderen vertrauenswürdigen Quelle herunterzuladen. 2. Deaktivieren Sie Antivirensoftware und Firewall: Einige Antivirensoftware oder Firewallprogramme verhindern möglicherweise die ordnungsgemäße Ausführung des Installationsprogramms. Versuchen Sie, die Antivirensoftware und die Firewall zu deaktivieren oder zu beenden, und führen Sie dann die Installation erneut aus

Die Installation von Android-Anwendungen unter Linux war für viele Benutzer schon immer ein Problem. Insbesondere für Linux-Benutzer, die gerne Android-Anwendungen verwenden, ist es sehr wichtig, die Installation von Android-Anwendungen auf Linux-Systemen zu beherrschen. Obwohl die direkte Ausführung von Android-Anwendungen unter Linux nicht so einfach ist wie auf der Android-Plattform, können wir mithilfe von Emulatoren oder Tools von Drittanbietern Android-Anwendungen unter Linux dennoch problemlos genießen. Im Folgenden wird erläutert, wie Android-Anwendungen auf Linux-Systemen installiert werden.

Wenn Sie Docker verwendet haben, müssen Sie Daemons, Container und ihre Funktionen verstehen. Ein Daemon ist ein Dienst, der im Hintergrund läuft, wenn ein Container bereits in einem System verwendet wird. Podman ist ein kostenloses Verwaltungstool zum Verwalten und Erstellen von Containern, ohne auf einen Daemon wie Docker angewiesen zu sein. Daher bietet es Vorteile bei der Verwaltung von Containern, ohne dass langfristige Backend-Dienste erforderlich sind. Darüber hinaus erfordert Podman keine Root-Berechtigungen. In dieser Anleitung wird ausführlich erläutert, wie Sie Podman auf Ubuntu24 installieren. Um das System zu aktualisieren, müssen wir zunächst das System aktualisieren und die Terminal-Shell von Ubuntu24 öffnen. Sowohl während des Installations- als auch des Upgrade-Vorgangs müssen wir die Befehlszeile verwenden. eine einfache

Während des Lernens in der Oberstufe machen sich einige Schüler sehr klare und genaue Notizen und machen sich mehr Notizen als andere in derselben Klasse. Für manche ist das Notieren ein Hobby, für andere ist es eine Notwendigkeit, wenn sie leicht kleine Informationen über etwas Wichtiges vergessen. Die NTFS-Anwendung von Microsoft ist besonders nützlich für Studierende, die wichtige Notizen außerhalb der regulären Vorlesungen speichern möchten. In diesem Artikel beschreiben wir die Installation von Ubuntu-Anwendungen auf Ubuntu24. Aktualisieren des Ubuntu-Systems Vor der Installation des Ubuntu-Installationsprogramms müssen wir auf Ubuntu24 sicherstellen, dass das neu konfigurierte System aktualisiert wurde. Wir können das bekannteste „a“ im Ubuntu-System verwenden

Detaillierte Schritte zur Installation der Go-Sprache auf einem Win7-Computer. Go (auch bekannt als Golang) ist eine von Google entwickelte Open-Source-Programmiersprache. Sie ist einfach, effizient und bietet eine hervorragende Parallelitätsleistung. Sie eignet sich für die Entwicklung von Cloud-Diensten, Netzwerkanwendungen usw Back-End-Systeme. Durch die Installation der Go-Sprache auf einem Win7-Computer können Sie schnell mit der Sprache beginnen und mit dem Schreiben von Go-Programmen beginnen. Im Folgenden werden die Schritte zur Installation der Go-Sprache auf einem Win7-Computer im Detail vorgestellt und spezifische Codebeispiele angehängt. Schritt 1: Laden Sie das Go-Sprachinstallationspaket herunter und besuchen Sie die offizielle Go-Website

1. Einleitung In den letzten Jahren haben sich YOLOs aufgrund ihres effektiven Gleichgewichts zwischen Rechenkosten und Erkennungsleistung zum vorherrschenden Paradigma im Bereich der Echtzeit-Objekterkennung entwickelt. Forscher haben das Architekturdesign, die Optimierungsziele, Datenerweiterungsstrategien usw. von YOLO untersucht und erhebliche Fortschritte erzielt. Gleichzeitig behindert die Verwendung von Non-Maximum Suppression (NMS) bei der Nachbearbeitung die End-to-End-Bereitstellung von YOLO und wirkt sich negativ auf die Inferenzlatenz aus. In YOLOs fehlt dem Design verschiedener Komponenten eine umfassende und gründliche Prüfung, was zu erheblicher Rechenredundanz führt und die Fähigkeiten des Modells einschränkt. Es bietet eine suboptimale Effizienz und ein relativ großes Potenzial zur Leistungsverbesserung. Ziel dieser Arbeit ist es, die Leistungseffizienzgrenze von YOLO sowohl in der Nachbearbeitung als auch in der Modellarchitektur weiter zu verbessern. zu diesem Zweck
