Heim > Datenbank > MySQL-Tutorial > SQL on Hadoop系统的最新进展(2)

SQL on Hadoop系统的最新进展(2)

WBOY
Freigeben: 2016-06-07 16:32:31
Original
1084 Leute haben es durchsucht

上篇主要讨论了Hive, Stinger/Tez, Impala, Shark这些SQL on Hadoop产品,这篇接着讨论Phoenix, Hadapt, Hawq。 Phoenix Salesforce开源的基于HBase的SQL查询系统,建立在HBase client API, coprocessors, custom filter的基础之上。 基本原理是将一个对于HB

上篇主要讨论了Hive, Stinger/Tez, Impala, Shark这些SQL on Hadoop产品,这篇接着讨论Phoenix, Hadapt, Hawq。

Phoenix

  • Salesforce开源的基于HBase的SQL查询系统,建立在HBase client API, coprocessors, custom filter的基础之上。
  • 基本原理是将一个对于HBase client来说比较复杂的查询转换成一系列Region Scan,结合create table时hook的coprocessor和custom ?filter在多台Region Server上进行并行查询, 汇总各个Scan结果输出给调用程序的ResultSet。说白了就是看大家用HBase client API开发程序太麻烦了,就弄了个JDBC包装,这样对于software engineer来说降低了开发成本,同时对于简单单表查询性能损失不大。
  • 种种迹象表明,Phoenix应该不是个优化的OLAP系统,更像是一个用于简单单表查询,过滤,排序,检索的OLTP系统。

优点:

  • HBase默认存储的数据类型都是字符串,但Phoenix支持更多的数据类型(int, float, char, varchar, time, date)
  • 使用JDBC操作数据,而不是HBase client API
  • 在RegionServer端通过coprocessor过滤where条件,执行aggregation函数。Hive on HBase把SQL转化成MapReduce去查询HBase;Impala on HBase把SQL转化成PlanFragment执行计划去查询HBase;?Phoenix把SQL转化成对HBase client API和coprocessor的调用,这三者的架构是相似的。不同点就是Hive on HBase和Impala on HBase都没有把coprocessor利用好,都是通过HBase client API把数据读到他们自己进程的内存之后才进行的filter, aggregation等操作。所以理论上讲前两种架构设计的产品性能不可能超过直接调用HBase Client的方式。
  • 从查询的角度来看HBase的column主要分为两类:primary key(row key column)和other columns。主要的不同是row key column能够利用HBase Region Server的index, filter, sort等特性,而other columns没有这些特性,只能通过二级索引辅助做一些优化。Phoenix能够在HBase上创建二级索引用于优化non row key columns的条件查询(目前只支持在static table上建二级索引,一个更通用的HBase二级索引实现方法可以参考华为开源的这个实现https://github.com/Huawei-Hadoop/hindex)。
  • salting of row keys to evenly distribute write load
  • 如果是row key column上的IN/OR/LIKE条件,可以通过Region Server的skip scan filter优化。
  • Dynamic columns支持(跟RDBMS的dynamic schema change类似),也就是用户不需要在create table的时候指定所有的column,后面什么时候需要随时添加。这个功能主要依赖于HBase的动态添加column的功能。
  • AutoCommit=false时(默认是false)把所有操作先缓存在客户端,只有你显示commit时才一次批量提交到HBase,SQL解析优化全是在客户端做,这个有点事务的意思。

缺点:

  • 不支持JOIN,考虑到HBase的设计初衷是尽量用冗余数据减少复杂的JOIN操作,实际上可以把相关数据都放在同一个表里,而不需要为了减少数据冗余,拆分到多个表中,所以很大程度也可以认为这不是一个缺点。
  • 从架构上看也仅是把SQL转成HBase Client的API和coprocessor的调用,而且coprocessor还不适合大规模数据的传输,所以如果中间结果的数据量还是比较大的话性能问题还是很明显的。
  • 这个缺点是所有的基于HBase的SQL系统都有的(包括Hive on HBase和Impala on HBase)。不管什么请求到HBase Region Server这边都得通过RegionScanner,这个接口不是面向OLAP型应用优化的存储文件读取接口。例如RegionScanner的实现里好多条件比较,是不利于全表扫描的。所以全表扫描的应用不如一个一个地读HFile,当然前提是得离线把memstore的数据都dump到hfile。目前coprocessor也是走的RegionScanner。这部分要想改得改Region Server代码了,那就是Apache HBase社区的事了。
  • 还有个问题就是coprocessor的问题了,由于coprocessor和HBase Region Server是在一个JVM里面,所以当coprocessor计算逻辑非常复杂,中间结果数据量很大的时候会占用大量内存。同时coprocessor不是流式地读取数据,某些节点数据积累过多也会造成内存不够用的问题。

RoadMap:

  • JOIN支持,虽然有点不符合设计初衷,但是大家都支持,就我不支持,太out of fashion了吧。
  • Transaction支持,通过参考https://github.com/yahoo/omid的方法。
  • Online Schema Evolution,动态改变column的类型,rename等。https://github.com/forcedotcom/phoenix/wiki

Hadapt/HadoopDB

http://hadapt.com/product/

http://db.cs.yale.edu/hadoopdb/hadoopdb.pdf

  • 架构和Hive相似,底层存储引擎有两种:HDFS和RDBMS(PostgreSQL),一个DataNode节点上有一个RDBMS节点。
  • 提供两种接口:SQL和MapReduce,SQL也是解析成MapReduce job来执行的,所以总的来说执行引擎都是MR。
  • 把多个MapReduce任务,转换成单node上的SQL+一个MR(data shuffle),这个跟水平压缩,垂直压缩类似,尽量减少SQL解析出的MR task个数,减少任务之间写HDFS的IO数据量。把一个SQL拆解成两部分:适合SQL做的用单机SQL,不适合的用MR(data shuffle)
  • 和Hive的不同点在于Hive只能操控HDFS上的数据,而Hadapt可以操控HDFS和RDBMS两种数据来源。对于RDBMS这个数据源来说,数据被预先load到分布式的RDBMS节点中,有统一的Catalog管理所有RDBMS中的数据。例如Map中的有些执行逻辑直接通过一个在RDBMS上执行的SQL来获得(修改InputFormat),然后使用MapReduce来做JOIN/Group By。而且如果在数据被load到分布式PostgreSQL节点上时分布情况正好符合group by/order by的条件,那么还省得通过MapReduce的shuffle来做了。
  • Hadapt的本质还是把SQL解析成MR任务来做,不是MPP的思想,所以Hive具备的有些缺点(启动时间长,JOIN效率较低)它也是具有的。还有如果想要join/group by/order by能够在RDBMS数据源之间高效执行,还得考虑数据预分布的问题。
  • 需要统一的元数据和数据一致性服务用于管理HDFS上的数据导入分布式PostgreSQL以及分区。
  • 在执行多个Query的时候,后面的query能够利用前面query的查询结果(已经把前面Query的查询结果可以写到RDBMS中,有点类似于数据仓库中的物化视图的概念),从而可以提高查询的性能。
  • Combine structured and unstructured data in single query。现在很多公司为了统一计算平台,把放到RDBMS中的数据也放到HDFS上存一份,要不没法和HDFS中的非结构化数据做JOIN。在Hadapt这里用户通过一个Query可以操控两种数据,不用分两个步骤走了。
  • 现在企业级应用大多使用的方案(ebay使用的是Hadoop+Teradata)是Hadoop+MPP/open source+commercial software的方式,即通过Hadoop批处理unstructured data(进行ETL操作)然后通过connector导入MPP进行structure data的query操作。但是这只是临时的替代方案,Hadapt说invisible loading(http://hadapt.com/blog/2012/09/05/invisible-loading-a-new-paradigm-for-loading-from-unstructured-to-structured-storage/?)才是最合理的,这样企业就有了一个unified analytic platform。但是用户把数据load到RDBMS之后就失去了在HDFS上存储的robust和scalable的特征,需要这个系统提供维护数据一致性相关的功能。

Hawq

a relational database that runs atop of HDFS

  • 原来Greenplum Database中的存储是本地磁盘,现在改成HDFS,原来Greenplum Database的单节点的RDBMS只充当execution engine的功能,不再充当storage功能。
  • Query执行通过Greenplum Database的parallel?execution engine(不再使用MR),每次查询开始把数据从HDFS中导入到Greenplum database,执行过程中通过内存交换数据而非MapReduce那样每次任务结束都写磁盘。
  • Hawq提供一个Universal Catalog Service管理分布在各个RDBMS节点的数据。
  • GP特有的cost-based parallel query optimizer and planner是它的一大优势,也是目前其他大多数的产品中没有的。它能够帮用户选出该SQL最高效的执行顺序。
  • 使用Greenplum Database充当执行引擎的好处:标准SQL兼容(correlated sub query, window functions, rollups, cube, scalar and aggregate function);支持ACID事务;JDBC/ODBC支持;JOIN顺序优化和索引支持(查询优化器);支持row/column两种存储格式。
  • GPXF (Greenplum Extension Framework) 使得Hawq能够读取存储在HDFS上的任何格式的数据(delimited text, sequence files, protobuf and avro)以及存储在Cassandra, Mongodb,?Isilon, Atom, MapR, Lustre, GPFS中的数据,无非就是多开发个读取接口。EMC是存储出身,肯定是希望这个analytic stack能够接入更多的存储产品,特别是他们卖的东西。
  • 底层的HDFS需要支持trancate语义(https://issues.apache.org/jira/browse/HDFS-3107)和native C interface(不是JNI的,JNI的不适合大规模并行查询,所以应该hawq自己实现了一个基于C的RPC通信接口,与NameNode和DataNode直接通信)。所以说Hawq底层的HDFS跟Apache版本的到底有多大区别,我也不知道。
  • 支持In-Database analytics (?http://madlib.net/?)
  1. 可以在Hawq内执行除了Query以外的分析任务,例如analytic functions(standard deviation, variance等)和off-the-shelf analytic package
  2. 支持数据挖掘算法:principal components analysis (PCA), enhanced support vector machines (SVM), linear models

性能相关:

  • Scott Yara(Greenplum老大)?公开承认hawq比pure Greenplum database要慢。这么做的目的无非就是更好的利用HDFS的可扩展性,统一存储管理。
  • 和其他sql on hadoop产品的性能对比方面,hawq在group by和join操作上与其他方案相比优势明显,前提是数据量不是特别大。(是不是因为数据导入的时候partition做的好呢,是不是拿load的时间换group by/join的时间呢?)

http://www.dataintoresults.com/2013/09/big-data-benchmark-impala-vs-hawq-vs-hive/

不过hawq和hadapt都说明了一个问题:就是unified analytic platform的重要性。

从商业产品来看,大数据分析产品主要有:

  • Teradata/Aster Data
  • EMC/Greenplum/Hawq
  • HP/Vertica 列存数据仓库
  • SAP/HANA 内存分析
  • Google/BigQuery 典型的Analysis as a Service
  • Amazon/Redshif 和AWS结合比较紧密

而传统软件厂商IBM, Oracle, Microsoft也都有产品,不过从技术的角度对后面这些公司的产品了解不多。

说完数据仓库相关产品,我们也顺便看看机器学习相关产品。机器学习不像SQL那么普遍,但是非常重要。我所知道的目前互联网公司做机器学习的系统是这样的:
(1) twitter基于pig做Machine Learning

http://www.umiacs.umd.edu/~jimmylin/publications/Lin_Kolcz_SIGMOD2012.pdf

  • 在Hadoop/MapReduce基础上,通过Pig扩展,使该平台具有机器学习处理能力
  • 特征抽取通过UDF实现
  • 单个学习单元的内部循环封装在Pig Storage Function中
  • 预测是根据学习训练的模型,结合UDF实现

(2) 不过目前互联网公司大多使用Hadoop做feature selection,然后对于不同的问题采用两种思路:

  • 采样数据,然后跑单机模型。因为很多机器学习算法是非常不容易并行化的,所以在全量数据的子集上面跑单机模型。
  • 基于MPI开发大规模并行的机器学习算法。

(3) Spark是个非常适合迭代型机器学习算法的计算模型和框架,而且Ecosystem非常完备(Shark,BlinkDB,MLbase)。特别是基于Spark的机器学习算法库MLbase(http://www.cs.berkeley.edu/~ameet/mlbase.pdf)更是给机器学习算法大规模应用提供了帮助。

由于Mahout是MR上的machine learning库,但是底层的MR天然不适合密集迭代计算的机器学习算法,导致Mahout的应用并不是很广泛。但是Spark却是非常适合迭代机器学习算法,那么MLbase的重要性就非常明显了。

目前Berkeley的教授们已经搞了一个公司叫databricks来做Spark/Shark的商业化,我是非常看好Spark的前途的。

Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage