Heim Datenbank MySQL-Tutorial 全局索引和本地索引分析

全局索引和本地索引分析

Jun 07, 2016 pm 04:37 PM
全局 分析 如何 本地 索引

有同行问到了全局索引和本地索引如何选择,全局索引可以分区也可以不分区,而本地索引只包含各自分区的数据。 本地索引是分区的,而且是根据分区表的分区键值来对应,就是分区表的每个分区都有对应的分区索引,而全局索引可以分区也可以不分区,全局索引对应

有同行问到了全局索引和本地索引如何选择,全局索引可以分区也可以不分区,而本地索引只包含各自分区的数据。

本地索引是分区的,而且是根据分区表的分区键值来对应,就是分区表的每个分区都有对应的分区索引,而全局索引可以分区也可以不分区,全局索引对应的表可以是分区表也可以不是分区表。

比如这里t_global01是heap table并不是partition table
SQL> create table t_global01 as select * from dba_objects;

Table created.
SQL> CREATE INDEX index_t_objid
2 ON t_global01 (object_id) global
3 PARTITION BY RANGE(object_id)
4 (PARTITION p1 VALUES LESS THAN(10000),
5 PARTITION p2 VALUES LESS THAN(20000),
6 PARTITION pmax VALUES LESS THAN(MAXVALUE));

Index created.

索引又可以分为前缀索引和非前缀索引,前缀索引是指索引的分区键包含在索引中,并且是索引的前导列,而非前缀索引则是分区键不在索引中或者不是索引的前导列,本地索引可以建立前缀索引和非前缀索引,而全局索引只能建立前缀索引。

SQL> create table t_local01 partition by range(object_id)
2 (partition p1 values less than(10000),
3 partition p2 values less than(20000),
4 partition p3 values less than(30000),
5 partition p4 values less than(40000),
6 partition p5 values less than(maxvalue))
7 as select * from dba_objects;

Table created.

建立本地的前缀索引
SQL> CREATE INDEX index_t_pre01 on t_local01(object_id,object_name) local;

Index created.

建立本地的非前缀索引
SQL> CREATE INDEX index_t_nonpre01 on t_local01(object_name) local;

Index created.

全局索引不允许建立非前缀索引
SQL> create index ind_t_objid_nonpre on t_local01(object_id) global
2 partition by range(data_object_id)
3 (partition p1 values less than(10000),
4 partition pmax values less than(maxvalue));
partition by range(data_object_id)
*
ERROR at line 2:
ORA-14038: GLOBAL partitioned index must be prefixed

分区表的全局索引可能会因为分区表的ddl而导致全局索引失效,这个需要我们特别注意,一般来说oltp建立全局索引,而在olap系统建立本地索引。

Partitioned Indexes: Global, Local, Prefixed and Non-Prefixed (文档 ID 69374.1)
To illustrate the usefulness of global indexes, imagine that we have a large
fact table partitioned on a DATE column. We frequently need to search the table
on a VARCHAR2 column (VCOL) which is not part of the table's partition key.
Assume that there are currently 12 partitions in the table.

We could use 2 possible methods:

A local non-prefixed index on VCOL:

| |
------- -------
| | (10 more | |
Values: A.. Z.. partitions here) A.. Z..

Or a global prefixed index on VCOL:

| |
------- -------
| | (10 more | |
Values: A.. D.. partitions here) T.. Z..

A global prefixed index would usually be the best choice for a unique index on
our example VCOL column. For nonunique indexes, the issue is whether we can use
parallel index searches (local non-prefixed) or whether we need a serial search,
even at the expense of the greater maintenance problems of global indexes.

这里提出了对于唯一列建立全局索引较合适

Common Questions on Indexes on Partitioned Table (文档 ID 1481609.1)记录了local index和global index的适用特点
What are the performance implications of local indexes
Partition elimination/pruning during SQLs against the partitioned table with predicate on the partition key (prefixed more often allows for partition elimination than non prefixed).
这里提出了如果查询条件中有分区键,建立本地索引可以让分区裁剪生效(前缀索引通常比非前缀索引更容易发生分区裁剪)

Non prefixed local index is useful if it is important to have quick access according to a column which is not the partition key (e.g. look up for value account_number column, hence the account_number is placed as a leading column of the index), while it is also important to have the index equipartitioned with the table e.g. to support the time interval for rolling out old data and rolling in new data (e.g. partition key is time_id column, rolling out/in data is done by partition maintenance commands). This scenario often happens in historical databases.

而非前缀索引通常在查询中没有分区键过滤时比较适用。

下面来通过测试来看看上面文章提供的结论:
SQL> create table tab01
2 partition by range(object_id)
3 (partition p1 values less than(10000),
4 partition p2 values less than(20000),
5 partition p3 values less than(30000),
6 partition p4 values less than(40000),
7 partition p5 values less than(maxvalue))
8 as
9 select * from dba_objects;

Table created.

SQL> create index ind_type_local_pre on tab01(object_id,object_type) local;

Index created.

SQL> create index ind_type_local_nonpre on tab01(object_type) local;

Index created.
SQL> analyze table tab01 compute statistics;

Table analyzed.

上面已经建立了前缀和非前缀的本地索引,然后如果我们的查询中没有分区键,那么看看两个索引的实用性
SQL> select /*+index(tab01 ind_type_local_nonpre)*/* from tab01 where object_typ
e='INDEX';

1726 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 4022647995

--------------------------------------------------------------------------------
--------------------------------------------
| Id | Operation | Name | Rows | Byt
es | Cost (%CPU)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
--------------------------------------------
| 0 | SELECT STATEMENT | | 1481 | 1
27K| 74 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE ALL | | 1481 | 1
27K| 74 (0)| 00:00:01 | 1 | 5 |
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| TAB01 | 1481 | 1
27K| 74 (0)| 00:00:01 | 1 | 5 |
|* 3 | INDEX RANGE SCAN | IND_TYPE_LOCAL_NONPRE | 1481 |
| 10 (0)| 00:00:01 | 1 | 5 |
--------------------------------------------------------------------------------
--------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("OBJECT_TYPE"='INDEX')

Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
353 consistent gets
0 physical reads
0 redo size
87737 bytes sent via SQL*Net to client
1757 bytes received via SQL*Net from client
117 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1726 rows processed

SQL> select /*+index(tab01 ind_type_local_pre)*/* from tab01 where object_type='
INDEX';

1726 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 1706313756

--------------------------------------------------------------------------------
-----------------------------------------
| Id | Operation | Name | Rows | Bytes
| Cost (%CPU)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
-----------------------------------------
| 0 | SELECT STATEMENT | | 1481 | 127K
| 198 (1)| 00:00:03 | | |
| 1 | PARTITION RANGE ALL | | 1481 | 127K
| 198 (1)| 00:00:03 | 1 | 5 |
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| TAB01 | 1481 | 127K
| 198 (1)| 00:00:03 | 1 | 5 |
|* 3 | INDEX FULL SCAN | IND_TYPE_LOCAL_PRE | 1481 |
| 176 (1)| 00:00:03 | 1 | 5 |
--------------------------------------------------------------------------------
-----------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("OBJECT_TYPE"='INDEX')
filter("OBJECT_TYPE"='INDEX')

Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
521 consistent gets
174 physical reads
0 redo size
87699 bytes sent via SQL*Net to client
1757 bytes received via SQL*Net from client
117 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1726 rows processed

这里看来对于本地索引,在查询条件中没有分区键时非前缀索引比较实用。

而如果有分区键的查询,本地索引是可以走分区裁剪的
SQL> select /*+index(tab01 ind_type_local_pre)*/* from tab01 where object_type='
INDEX' and object_id

920 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 4238522555

--------------------------------------------------------------------------------
-----------------------------------------
| Id | Operation | Name | Rows | Bytes
| Cost (%CPU)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
-----------------------------------------
| 0 | SELECT STATEMENT | | 281 | 21075
| 34 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE SINGLE | | 281 | 21075
| 34 (0)| 00:00:01 | 1 | 1 |
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| TAB01 | 281 | 21075
| 34 (0)| 00:00:01 | 1 | 1 |
|* 3 | INDEX RANGE SCAN | IND_TYPE_LOCAL_PRE | 281 |
| 30 (0)| 00:00:01 | 1 | 1 |
--------------------------------------------------------------------------------
-----------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("OBJECT_TYPE"='INDEX' AND "OBJECT_ID" filter("OBJECT_TYPE"='INDEX')

Statistics
----------------------------------------------------------
244 recursive calls
0 db block gets
244 consistent gets
0 physical reads
0 redo size
45241 bytes sent via SQL*Net to client
1163 bytes received via SQL*Net from client
63 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
920 rows processed

SQL> select /*+index(tab01 ind_type_local_nonpre)*/* from tab01 where object_typ
e='INDEX' and object_id

920 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 1322437935

--------------------------------------------------------------------------------
--------------------------------------------
| Id | Operation | Name | Rows | Byt
es | Cost (%CPU)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
--------------------------------------------
| 0 | SELECT STATEMENT | | 281 | 210
75 | 21 (0)| 00:00:01 | | |
| 1 | PARTITION RANGE SINGLE | | 281 | 210
75 | 21 (0)| 00:00:01 | 1 | 1 |
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| TAB01 | 281 | 210
75 | 21 (0)| 00:00:01 | 1 | 1 |
|* 3 | INDEX RANGE SCAN | IND_TYPE_LOCAL_NONPRE | 281 |
| 1 (0)| 00:00:01 | 1 | 1 |
--------------------------------------------------------------------------------
--------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("OBJECT_TYPE"='INDEX')

Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
182 consistent gets
0 physical reads
0 redo size
45241 bytes sent via SQL*Net to client
1163 bytes received via SQL*Net from client
63 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
920 rows processed

这里我们看出执行计划中都出现了PARTITION RANGE SINGLE单个分区扫描(pstart和pstop都是1),这个是因为执行计划的INDEX RANGE SCAN索引范围扫描时pstart 1和pstop 1,此时索引扫描就只会扫描指定的索引分区,这个也就是索引的分区裁剪,当然还有表的分区裁剪,关于分区裁剪的内容小鱼后面有时间会列出来单独讨论。

而如果是全局索引,索引默认不分区,所以也就无法发生索引的分区裁剪:
SQL> drop index ind_type_local_nonpre;

Index dropped.

SQL> create index ind_type_global on tab01(object_type) global;

Index created.

SQL> select /*+index(tab01 ind_type_global)*/* from tab01 where object_type='IND
EX' and object_id

920 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 3954671853

--------------------------------------------------------------------------------
--------------------------------------
| Id | Operation | Name | Rows | Bytes | C
ost (%CPU)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
--------------------------------------
| 0 | SELECT STATEMENT | | 281 | 21075 |
69 (0)| 00:00:01 | | |
|* 1 | TABLE ACCESS BY GLOBAL INDEX ROWID| TAB01 | 281 | 21075 |
69 (0)| 00:00:01 | 1 | 1 |
|* 2 | INDEX RANGE SCAN | IND_TYPE_GLOBAL | 1481 | |
5 (0)| 00:00:01 | | |
--------------------------------------------------------------------------------
--------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter("OBJECT_ID" 2 - access("OBJECT_TYPE"='INDEX')

Statistics
----------------------------------------------------------
1 recursive calls
0 db block gets
185 consistent gets
6 physical reads
0 redo size
45241 bytes sent via SQL*Net to client
1163 bytes received via SQL*Net from client
63 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
920 rows processed

What are the performance implications of global indexes?
Global index can be useful where rapid access, data integrity, and availability are important. In an OLTP system, a table may be partitioned by one key, for example, the employees.department_id column, but an application may need to access the data with many different keys, for example, by employee_id or job_id. Global indexes can be useful in this scenario as global indexes are prefixed and can provide better performance than local nonprefixed indexes because they minimize the number of index partition probes (cf. local prefixed more often allows for partition elimination than non prefixed mentioned in the previous section).

全局索引多用于OLTP系统,可以快速的返回查询的数据,特别适用于查询条件中不包含分区键的查询,这种情况全局索引相比本地索引更加高效。

Global indexes are harder to manage than local indexes. At partition maintenance of the table, all partitions of a global index are affected.

这里提出全局索引难以维护,如果分区修改了,所有分区的索引都会影响

Partition elimination/pruning during SQLs against the partitioned table: prefixed - always allows for partition elimination.

同样全局索引也是可以发生分区裁剪的

SQL> create table t_global01 as select * from dba_objects;

Table created.
SQL> CREATE INDEX index_t_objid
2 ON t_global01 (object_id) global
3 PARTITION BY RANGE(object_id)
4 (PARTITION p1 VALUES LESS THAN(10000),
5 PARTITION p2 VALUES LESS THAN(20000),
6 PARTITION pmax VALUES LESS THAN(MAXVALUE));

Index created.
SQL> select * from t_global01 where object_id

9568 rows selected.

Execution Plan
----------------------------------------------------------
Plan hash value: 1223163610

--------------------------------------------------------------------------------
------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CP
U)| Time | Pstart| Pstop |
--------------------------------------------------------------------------------
------------------------------
| 0 | SELECT STATEMENT | | 9194 | 897K| 177 (
0)| 00:00:03 | | |
| 1 | PARTITION RANGE SINGLE | | 9194 | 897K| 177 (
0)| 00:00:03 | 1 | 1 |
| 2 | TABLE ACCESS BY INDEX ROWID| T_GLOBAL01 | 9194 | 897K| 177 (
0)| 00:00:03 | | |
|* 3 | INDEX RANGE SCAN | INDEX_T_OBJID | 9194 | | 43 (
0)| 00:00:01 | 1 | 1 |
--------------------------------------------------------------------------------
------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

3 - access("OBJECT_ID"

这里看出也发生了所谓的分区裁剪,index range scan的pstart和pstop都是1,说明是扫描了索引的一个分区,这也和上面partition range single相对应(出现partition range single并不一定表示该表是分区表,有可能有分区的索引)

The hash index partitioning can improve performance of indexes where a small number leaf blocks in the index have high contention in multiuser OLTP environment. In some OLTP applications, index insertions happen only at the right edge of the index. This situation could occur when the index is defined on monotonically increasing columns (e.g. column value is populated by a sequence). In such situations, the right edge of the index becomes a hotspot because of contention for index pages, buffers, latches for update, and additional index maintenance activity, which results in performance degradation.

这里提出了一个hash index partition,在高并发情况下,索引的数据会不停往右边倾斜(比如列是序列填充时),这种情况下索引右边叶块会成为热点块,造成大量的buffer latches竞争和额外的维护(比如索引分裂)而导致性能下降。

关于本地索引和全局索引小鱼也没有较多的实战案例,个人而言小鱼维护的大多是OLTP系统,所以一般都是建立的全局索引,可以参考以下建立:
Global index和local index适用范围
non-prefixed Local indexes特别适用于基于历史数据查询分析的数据库,在这样的数据库中,历史数据一般都是根据时间来分区的。

prefixed Local index适用于对分区主键进行索引,可以明显减少查询所搜索到的分区数目,极大的加快查询速度。

Global prefixed index适用于对非分区主键进行索引,特别对于唯一列的查询是比较适合建立全局索引的,但是Global pre- fixed index难以维护,任何对基表的分区信息的修改都会不可避免的导致索引的失效。

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So implementieren Sie Datenstatistiken und -analysen in Uniapp So implementieren Sie Datenstatistiken und -analysen in Uniapp Oct 24, 2023 pm 12:37 PM

So implementieren Sie Datenstatistiken und -analysen in uniapp 1. Hintergrundeinführung Datenstatistiken und -analysen sind ein sehr wichtiger Teil des Entwicklungsprozesses für mobile Anwendungen. Durch Statistiken und Analysen des Benutzerverhaltens können Entwickler ein tiefgreifendes Verständnis der Benutzerpräferenzen und -nutzung erlangen Gewohnheiten. Dadurch werden Produktdesign und Benutzererfahrung optimiert. In diesem Artikel wird die Implementierung von Datenstatistiken und Analysefunktionen in uniapp vorgestellt und einige spezifische Codebeispiele bereitgestellt. 2. Wählen Sie geeignete Datenstatistik- und Analysetools. Der erste Schritt zur Implementierung von Datenstatistiken und -analysen in uniapp besteht darin, die geeigneten Datenstatistik- und Analysetools auszuwählen.

So fügen Sie lokale Musik zu Limonadenmusik hinzu So fügen Sie lokale Musik zu Limonadenmusik hinzu Feb 23, 2024 pm 07:13 PM

Wie füge ich lokale Musik zu Soda Music hinzu? Sie können Ihre lokale Lieblingsmusik zur Soda Music APP hinzufügen, aber die meisten Freunde wissen nicht, wie man lokale Musik zu Soda Music hinzufügt Der Herausgeber, interessierte Nutzer kommen vorbei! Anleitung zur Verwendung von Soda-Musik. So fügen Sie lokale Musik zu Soda-Musik hinzu und klicken Sie auf den Funktionsbereich [Musik] unten auf der Hauptseite das Symbol [drei Punkte] in der unteren rechten Ecke; 3. Erweitern Sie abschließend die Funktionsleiste unten und wählen Sie die Schaltfläche [Herunterladen], um es zur lokalen Musik hinzuzufügen.

Was sind die Oracle-Indextypen? Was sind die Oracle-Indextypen? Nov 16, 2023 am 09:59 AM

Oracle-Indextypen umfassen: 1. B-Tree-Index; 3. Funktionsindex; Bitmap-Verbindungsindex; 10. Zusammengesetzter Index. Detaillierte Einführung: 1. Der B-Tree-Index ist eine selbstausgleichende Baumdatenstruktur, die gleichzeitige Vorgänge effizient unterstützen kann. In der Oracle-Datenbank ist der B-Tree-Index der am häufigsten verwendete Indextyp zum Bitmap-Algorithmus und so weiter.

Analyse der Gründe, warum das sekundäre Verzeichnis von DreamWeaver CMS nicht geöffnet werden kann Analyse der Gründe, warum das sekundäre Verzeichnis von DreamWeaver CMS nicht geöffnet werden kann Mar 13, 2024 pm 06:24 PM

Titel: Analyse der Gründe und Lösungen, warum das sekundäre Verzeichnis von DreamWeaver CMS nicht geöffnet werden kann. Dreamweaver CMS (DedeCMS) ist ein leistungsstarkes Open-Source-Content-Management-System, das häufig bei der Erstellung verschiedener Websites verwendet wird. Allerdings kann es beim Erstellen einer Website manchmal vorkommen, dass das sekundäre Verzeichnis nicht geöffnet werden kann, was zu Problemen beim normalen Betrieb der Website führt. In diesem Artikel analysieren wir die möglichen Gründe, warum das sekundäre Verzeichnis nicht geöffnet werden kann, und stellen spezifische Codebeispiele zur Lösung dieses Problems bereit. 1. Mögliche Ursachenanalyse: Pseudostatisches Regelkonfigurationsproblem: während der Verwendung

Analysieren Sie, ob die Hauptprogrammiersprache von Tencent Go ist Analysieren Sie, ob die Hauptprogrammiersprache von Tencent Go ist Mar 27, 2024 pm 04:21 PM

Titel: Ist Tencents wichtigste Programmiersprache Go: Eine eingehende Analyse Als Chinas führendes Technologieunternehmen hat Tencent bei der Auswahl seiner Programmiersprachen schon immer große Aufmerksamkeit auf sich gezogen. In den letzten Jahren glauben einige Leute, dass Tencent hauptsächlich Go als Hauptprogrammiersprache übernommen hat. In diesem Artikel wird eine eingehende Analyse durchgeführt, ob die Hauptprogrammiersprache von Tencent Go ist, und es werden konkrete Codebeispiele angegeben, um diese Ansicht zu untermauern. 1. Anwendung der Go-Sprache in Tencent Go ist eine von Google entwickelte Open-Source-Programmiersprache. Viele Entwickler schätzen ihre Effizienz, Parallelität und Einfachheit.

So lösen Sie das Problem, dass der Index das Array-Limit überschreitet So lösen Sie das Problem, dass der Index das Array-Limit überschreitet Nov 15, 2023 pm 05:22 PM

Die Lösungen sind: 1. Überprüfen Sie, ob der Indexwert korrekt ist: Überprüfen Sie zunächst, ob Ihr Indexwert den Längenbereich des Arrays überschreitet. Der Index des Arrays beginnt bei 0, daher sollte der maximale Indexwert die Array-Länge minus 1 sein. Überprüfen Sie die Schleifenrandbedingungen: Wenn Sie Indizes für den Array-Zugriff in einer Schleife verwenden, stellen Sie sicher, dass die Schleifenrandbedingungen korrekt sind; 3. Initialisieren Sie das Array: Stellen Sie vor der Verwendung eines Arrays sicher, dass das Array korrekt initialisiert wurde. 4. Verwenden Sie die Ausnahmebehandlung: Sie können den Ausnahmebehandlungsmechanismus im Programm verwenden, um Fehler abzufangen, bei denen der Index die Grenzen des Arrays überschreitet. und entsprechend damit umgehen.

Analysieren Sie die Vor- und Nachteile der statischen Positionierungstechnologie Analysieren Sie die Vor- und Nachteile der statischen Positionierungstechnologie Jan 18, 2024 am 11:16 AM

Analyse der Vorteile und Grenzen der statischen Positionierungstechnologie Mit der Entwicklung moderner Wissenschaft und Technologie ist die Positionierungstechnologie zu einem unverzichtbaren Bestandteil unseres Lebens geworden. Als eine davon hat die statische Positionierungstechnologie ihre einzigartigen Vorteile und Grenzen. In diesem Artikel wird eine eingehende Analyse der statischen Positionierungstechnologie durchgeführt, um ihren aktuellen Anwendungsstatus und zukünftige Entwicklungstrends besser zu verstehen. Werfen wir zunächst einen Blick auf die Vorteile der statischen Positionierungstechnologie. Die statische Positionierungstechnologie erreicht die Bestimmung von Positionsinformationen durch Beobachtung, Messung und Berechnung des zu positionierenden Objekts. Im Vergleich zu anderen Positionierungstechnologien

PHP gibt den String von der Startposition bis zur Endposition eines Strings in einem anderen String zurück PHP gibt den String von der Startposition bis zur Endposition eines Strings in einem anderen String zurück Mar 21, 2024 am 10:31 AM

In diesem Artikel wird ausführlich erläutert, wie PHP die Zeichenfolge von der Startposition zur Endposition einer Zeichenfolge in einer anderen Zeichenfolge zurückgibt. Der Herausgeber hält dies für recht praktisch, daher teile ich es Ihnen als Referenz mit diesem Artikel können Sie etwas abgewinnen. Verwenden Sie die Funktion substr() in PHP, um Teilzeichenfolgen aus einer Zeichenfolge zu extrahieren. Die Funktion substr() kann Zeichen innerhalb eines angegebenen Bereichs aus einer Zeichenfolge extrahieren. Die Syntax lautet wie folgt: substr(string,start,length) wobei: string: der ursprüngliche String, aus dem der Teilstring extrahiert werden soll. start: Der Index der Startposition des Teilstrings (beginnend bei 0). Länge (optional): Die Länge des Teilstrings. Wenn nicht angegeben, dann

See all articles