How to use MongoDB as a pure in-memory DB (Redis s
原po The idea There has been a growing interest in using MongoDB as an in-memory database, meaning that the data is not stored on disk at all. This can be super useful for applications like: a write-heavy cache in front of a slower RDBMS s
原po
The idea
There has been a growing interest in using MongoDB as an in-memory database, meaning that the data is not stored on disk at all. This can be super useful for applications like:
- a write-heavy cache in front of a slower RDBMS system
- embedded systems
- PCI compliant systems where no data should be persisted
- unit testing where the database should be light and easily cleaned
That would be really neat indeed if it was possible: one could leverage the advanced querying / indexing capabilities of MongoDB without hitting the disk. As you probably know the disk IO (especially random) is the system bottleneck in 99% of cases, and if you are writing data you cannot avoid hitting the disk.
One sweet design choice of MongoDB is that it uses memory-mapped files to handle access to data files on disk. This means that MongoDB does not know the difference between RAM and disk, it just accesses bytes at offsets in giant arrays representing files and the OS takes care of the rest! It is this design decision that allows MongoDB to run in RAM with no modification.
How it is done
This is all achieved by using a special type of filesystem called tmpfs. Linux will make it appear as a regular FS but it is entirely located in RAM (unless it is larger than RAM in which case it can swap, which can be useful!). I have 32GB RAM on this server, let’s create a 16GB tmpfs:
<code># mkdir /ramdata # mount -t tmpfs -o size=16000M tmpfs /ramdata/ # df Filesystem 1K-blocks Used Available Use% Mounted on /dev/xvde1 5905712 4973924 871792 86% / none 15344936 0 15344936 0% /dev/shm tmpfs 16384000 0 16384000 0% /ramdata</code>
Now let’s start MongoDB with the appropriate settings. smallfiles and noprealloc should be used to reduce the amount of RAM wasted, and will not affect performance since it’s all RAM based. nojournal should be used since it does not make sense to have a journal in this context!
<code>dbpath=/ramdata nojournal = true smallFiles = true noprealloc = true</code>
After starting MongoDB, you will find that it works just fine and the files are as expected in the FS:
<code># mongo MongoDB shell version: 2.3.2 connecting to: test > db.test.insert({a:1}) > db.test.find() { "_id" : ObjectId("51802115eafa5d80b5d2c145"), "a" : 1 } # ls -l /ramdata/ total 65684 -rw-------. 1 root root 16777216 Apr 30 15:52 local.0 -rw-------. 1 root root 16777216 Apr 30 15:52 local.ns -rwxr-xr-x. 1 root root 5 Apr 30 15:52 mongod.lock -rw-------. 1 root root 16777216 Apr 30 15:52 test.0 -rw-------. 1 root root 16777216 Apr 30 15:52 test.ns drwxr-xr-x. 2 root root 40 Apr 30 15:52 _tmp</code>
Now let’s add some data and make sure it behaves properly. We will create a 1KB document and add 4 million of them:
<code>> str = "" > aaa = "aaaaaaaaaa" aaaaaaaaaa > for (var i = 0; i for (var i = 0; i db.foo.stats() { "ns" : "test.foo", "count" : 4000000, "size" : 4544000160, "avgObjSize" : 1136.00004, "storageSize" : 5030768544, "numExtents" : 26, "nindexes" : 1, "lastExtentSize" : 536600560, "paddingFactor" : 1, "systemFlags" : 1, "userFlags" : 0, "totalIndexSize" : 129794000, "indexSizes" : { "_id_" : 129794000 }, "ok" : 1 }</code>
The document average size is 1136 bytes and it takes up about 5GB of storage. The index on _id takes about 130MB. Now we need to verify something very important: is the data duplicated in RAM, existing both within MongoDB and the filesystem? Remember that MongoDB does not buffer any data within its own process, instead data is cached in the FS cache. Let’s drop the FS cache and see what is in RAM:
<code># echo 3 > /proc/sys/vm/drop_caches # free total used free shared buffers cached Mem: 30689876 6292780 24397096 0 1044 5817368 -/+ buffers/cache: 474368 30215508 Swap: 0 0 0</code>
As you can see there is 6.3GB of used RAM of which 5.8GB is in FS cache (buffers). Why is there still 5.8GB of FS cache even after all caches were dropped?? The reason is that Linux is smart and it does not duplicate the pages between tmpfs and its cache… Bingo! That means your data exists with a single copy in RAM. Let’s access all documents and verify RAM usage is unchanged:
<code>> db.foo.find().itcount() 4000000 # free total used free shared buffers cached Mem: 30689876 6327988 24361888 0 1324 5818012 -/+ buffers/cache: 508652 30181224 Swap: 0 0 0 # ls -l /ramdata/ total 5808780 -rw-------. 1 root root 16777216 Apr 30 15:52 local.0 -rw-------. 1 root root 16777216 Apr 30 15:52 local.ns -rwxr-xr-x. 1 root root 5 Apr 30 15:52 mongod.lock -rw-------. 1 root root 16777216 Apr 30 16:00 test.0 -rw-------. 1 root root 33554432 Apr 30 16:00 test.1 -rw-------. 1 root root 536608768 Apr 30 16:02 test.10 -rw-------. 1 root root 536608768 Apr 30 16:03 test.11 -rw-------. 1 root root 536608768 Apr 30 16:03 test.12 -rw-------. 1 root root 536608768 Apr 30 16:04 test.13 -rw-------. 1 root root 536608768 Apr 30 16:04 test.14 -rw-------. 1 root root 67108864 Apr 30 16:00 test.2 -rw-------. 1 root root 134217728 Apr 30 16:00 test.3 -rw-------. 1 root root 268435456 Apr 30 16:00 test.4 -rw-------. 1 root root 536608768 Apr 30 16:01 test.5 -rw-------. 1 root root 536608768 Apr 30 16:01 test.6 -rw-------. 1 root root 536608768 Apr 30 16:04 test.7 -rw-------. 1 root root 536608768 Apr 30 16:03 test.8 -rw-------. 1 root root 536608768 Apr 30 16:02 test.9 -rw-------. 1 root root 16777216 Apr 30 15:52 test.ns drwxr-xr-x. 2 root root 40 Apr 30 16:04 _tmp # df Filesystem 1K-blocks Used Available Use% Mounted on /dev/xvde1 5905712 4973960 871756 86% / none 15344936 0 15344936 0% /dev/shm tmpfs 16384000 5808780 10575220 36% /ramdata</code>
And that verifies it! :)
What about replication?
You probably want to use replication since a server loses its RAM data upon reboot! Using a standard replica set you will get automatic failover and more read capacity. If a server is rebooted MongoDB will automatically rebuild its data by pulling it from another server in the same replica set (resync). This should be fast enough even in cases with a lot of data and indices since all operations are RAM only :)
It is important to remember that write operations get written to a special collection called oplog which resides in the local database and takes 5% of the volume by default. In my case the oplog would take 5% of 16GB which is 800MB. In doubt, it is safer to choose a fixed oplog size using the oplogSize option. If a secondary server is down for a longer time than the oplog contains, it will have to be resynced. To set it to 1GB, use:
<code>oplogSize = 1000</code>
What about sharding?
Now that you have all the querying capabilities of MongoDB, what if you want to implement a large service with it? Well you can use sharding freely to implement a large scalable in-memory store. Still the config servers (that contain the chunk distribution) should be disk based since their activity is small and rebuilding a cluster from scratch is not fun.
What to watch for
RAM is a scarce resource, and in this case you definitely want the entire data set to fit in RAM. Even though tmpfs can resort to swapping the performance would drop dramatically. To make best use of the RAM you should consider:
- usePowerOf2Sizes option to normalize the storage buckets
- run a compact command or resync the node periodically.
- use a schema design that is fairly normalized (avoid large document growth)
Conclusion
Sweet, you can now use MongoDB and all its features as an in-memory RAM-only store! Its performance should be pretty impressive: during the test with a single thread / core I was achieving 20k writes per second, and it should scale linearly over the number of cores.
原文地址:How to use MongoDB as a pure in-memory DB (Redis s, 感谢原作者分享。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Es wird empfohlen, die neueste Version von MongoDB (derzeit 5.0) zu verwenden, da diese die neuesten Funktionen und Verbesserungen bietet. Bei der Auswahl einer Version müssen Sie funktionale Anforderungen, Kompatibilität, Stabilität und Community-Unterstützung berücksichtigen. Die neueste Version verfügt beispielsweise über Funktionen wie Transaktions- und Aggregationspipeline-Optimierung. Stellen Sie sicher, dass die Version mit der Anwendung kompatibel ist. Wählen Sie für Produktionsumgebungen die Langzeit-Support-Version. Die neueste Version bietet eine aktivere Community-Unterstützung.

Node.js ist eine serverseitige JavaScript-Laufzeitumgebung, während Vue.js ein clientseitiges JavaScript-Framework zum Erstellen interaktiver Benutzeroberflächen ist. Node.js wird für die serverseitige Entwicklung verwendet, beispielsweise für die Entwicklung von Back-End-Service-APIs und die Datenverarbeitung, während Vue.js für die clientseitige Entwicklung verwendet wird, beispielsweise für Single-Page-Anwendungen und reaktionsfähige Benutzeroberflächen.

Mit der Entwicklung des Internets wird das Leben der Menschen immer digitaler und die Nachfrage nach Personalisierung wird immer stärker. In dieser Zeit der Informationsexplosion werden Benutzer häufig mit riesigen Informationsmengen konfrontiert und haben keine Wahl. Daher ist die Bedeutung von Echtzeit-Empfehlungssystemen immer wichtiger geworden. In diesem Artikel werden die Erfahrungen bei der Implementierung eines Echtzeit-Empfehlungssystems mit MongoDB geteilt, in der Hoffnung, Entwicklern Inspiration und Hilfe zu bieten. 1. Einführung in MongoDB MongoDB ist eine Open-Source-NoSQL-Datenbank, die für ihre hohe Leistung, einfache Skalierbarkeit und ihr flexibles Datenmodell bekannt ist. Im Vergleich zur Biografie

Die Daten der MongoDB-Datenbank werden im angegebenen Datenverzeichnis gespeichert, das sich im lokalen Dateisystem, Netzwerkdateisystem oder Cloud-Speicher befinden kann. Der spezifische Speicherort ist wie folgt: Lokales Dateisystem: Der Standardpfad ist Linux/macOS: /data/db, Windows: C:\data\db. Netzwerkdateisystem: Der Pfad hängt vom Dateisystem ab. Cloud-Speicher: Der Pfad wird vom Cloud-Speicheranbieter bestimmt.

Die MongoDB-Datenbank ist für ihre Flexibilität, Skalierbarkeit und hohe Leistung bekannt. Zu seinen Vorteilen gehört: ein Dokumentdatenmodell, das eine flexible und unstrukturierte Speicherung von Daten ermöglicht. Horizontale Skalierbarkeit auf mehrere Server über Sharding. Abfrageflexibilität, Unterstützung komplexer Abfragen und Aggregationsvorgänge. Datenreplikation und Fehlertoleranz sorgen für Datenredundanz und hohe Verfügbarkeit. JSON-Unterstützung für einfache Integration mit Front-End-Anwendungen. Hohe Leistung für schnelle Reaktion auch bei der Verarbeitung großer Datenmengen. Open Source, anpassbar und kostenlos nutzbar.

MongoDB ist ein dokumentenorientiertes, verteiltes Datenbanksystem zur Speicherung und Verwaltung großer Mengen strukturierter und unstrukturierter Daten. Zu den Kernkonzepten gehören die Speicherung und Verteilung von Dokumenten und zu den Hauptfunktionen gehören dynamische Schemata, Indizierung, Aggregation, Kartenreduzierung und Replikation. Es wird häufig in Content-Management-Systemen, E-Commerce-Plattformen, Social-Media-Websites, IoT-Anwendungen und der Entwicklung mobiler Anwendungen eingesetzt.

Die MongoDB-Datenbankdatei befindet sich im MongoDB-Datenverzeichnis, das standardmäßig /data/db ist und .bson (Dokumentdaten), ns (Sammlungsinformationen), Journal (Schreibvorgangsdatensätze) und wiredTiger (Daten bei Verwendung von WiredTiger) enthält Speicher-Engine) und config (Datenbankkonfigurationsinformationen) und andere Dateien.

Unter Linux/macOS: Erstellen Sie das Datenverzeichnis und starten Sie den Dienst „mongod“. Unter Windows: Erstellen Sie das Datenverzeichnis und starten Sie den MongoDB-Dienst über den Service Manager. In Docker: Führen Sie den Befehl „docker run“ aus. Auf anderen Plattformen: Bitte konsultieren Sie die MongoDB-Dokumentation. Überprüfungsmethode: Führen Sie den Befehl „mongo“ aus, um eine Verbindung herzustellen und die Serverversion anzuzeigen.
