Percona Thread Pool性能基准测试
MySQL从5.5.16开始,在MySQL的商业化版本中将Thread Pool作为plugin提供官方功能支持。后来MariaDB也实现了这一功能,Percona也跟进实现了。从这几天对Percona 5.6.16版本做了下thread pool对比测试,试图找到较为合适的配置参数。 下面是几个测试模式对比:
MySQL从5.5.16开始,在MySQL的商业化版本中将Thread Pool作为plugin提供官方功能支持。后来MariaDB也实现了这一功能,Percona也跟进实现了。从这几天对Percona 5.6.16版本做了下thread pool对比测试,试图找到较为合适的配置参数。
下面是几个测试模式对比:
模式 配置参数
Percona 5.6.16-nothp 未开启 thread pool 模式
CASE0-thp(128)-oversub(16)-max(2048) thread_handling = pool-of-threads
thread_pool_size = 128
thread_pool_oversubscribe = 16
thread_pool_max_threads = 2048
CASE1-thp(default) thread_handling = pool-of-threads
其他默认设置
CASE2-thp(default)-oversub(10) thread_handling = pool-of-threads
thread_pool_oversubscribe = 10
其他默认设置
CASE3-thp(default)-oversub(10)-max(10000) thread_handling = pool-of-threads
thread_pool_oversubscribe = 10
thread_pool_max_threads = 100000
其他默认设置
CASE4-thp(default)-oversub(16) thread_handling = pool-of-threads
thread_pool_oversubscribe = 16
其他默认设置
CASE5-thp(128)-oversub(16)-max(100000) thread_handling = pool-of-threads
thread_pool_size = 128
thread_pool_oversubscribe = 16
thread_pool_max_threads = 100000
仍然采用tpcc-mysql这个测试工具,基准值:
测试Warehouse数: 100
warmup time: 60s
run time: 1200s
并发线程数: 64 ~ 1920
测试环境信息:
测试机 DELL PE R710
CPU E5620 @ 2.40GHz(4 core, 8 threads, L3 Cache 12 MB) * 2
内存 32G(4G * 8)
RAID卡 PERC H700 Integrated, 512MB, BBU, 12.10.1-0001
系统 Red Hat Enterprise Linux Server release 6.4 (Santiago)
内核 2.6.32-358.el6.x86_64 #1 SMP
raid级别 raid 0
文件系统 xfs
硬盘 SSD: Intel 520系列SSD, 800G * 1
Percona版本号:5.6.16-64.2-rel64.2-log Percona Server with XtraDB (GPL), Release rel64.2, Revision 569,Percona相关的关键配置有:
innodb_buffer_pool_size = 26G
innodb_flush_log_at_trx_commit = 1
测试脚本可参考:MySQL压力测试经验
测试结果见下:
针对这个测试结果,我们可以得到一些结论:
1、通常地,只需要开启 pool-of-threads 模式就可以;
2、可以根据实际压力情况,适当调整 thread_pool_oversubscribe 选项以提升 TPS,这个选项值设置范围一般在 3~20;
3、thread-pool-size默认值是逻辑CPU个数,最大值是 128,不建议调整或显式设置,如果显式设定 thread-pool-size 的值,可能会带来反效果;
4、thread_pool_max_threads 默认值是 100000,强烈不建议修改。
综上,对于Thread Pool,我们一般建议设置下面2个选项就足够了:
thread_handling = pool-of-threads
thread_pool_oversubscribe = 10 #这个值建议在3~20间,不清楚的话,无需设置
备注:启用Thread Pool后,想要终止某个查询的话,要这么写KILL QUERY connection_id,,而不是写成 KILLconnection_id,否则就会导致整个连接被KILL。
如果还有什么问题,欢迎加入我的QQ群(272675472)讨论。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Der „Inaction Test“ des neuen Fantasy-Märchen-MMORPG „Zhu Xian 2“ startet am 23. April. Was für eine neue Märchen-Abenteuergeschichte wird auf dem Kontinent Zhu Die Six Realm Immortal World, eine Vollzeitakademie zur Kultivierung von Unsterblichen, ein freies Leben zur Kultivierung von Unsterblichen und jede Menge Spaß in der Welt der Unsterblichen warten darauf, von den unsterblichen Freunden persönlich erkundet zu werden! Der Vorab-Download von „Wuwei Test“ ist jetzt möglich. Sie können sich zum Herunterladen auf die offizielle Website begeben. Der Aktivierungscode kann nach dem Vorab-Download und der Installation verwendet werden abgeschlossen. „Zhu Als Blaupause wird der Spielhintergrund festgelegt

Ollama ist ein superpraktisches Tool, mit dem Sie Open-Source-Modelle wie Llama2, Mistral und Gemma problemlos lokal ausführen können. In diesem Artikel werde ich vorstellen, wie man Ollama zum Vektorisieren von Text verwendet. Wenn Sie Ollama nicht lokal installiert haben, können Sie diesen Artikel lesen. In diesem Artikel verwenden wir das Modell nomic-embed-text[2]. Es handelt sich um einen Text-Encoder, der OpenAI text-embedding-ada-002 und text-embedding-3-small bei kurzen und langen Kontextaufgaben übertrifft. Starten Sie den nomic-embed-text-Dienst, wenn Sie o erfolgreich installiert haben

Leistungsvergleich verschiedener Java-Frameworks: REST-API-Anforderungsverarbeitung: Vert.x ist am besten, mit einer Anforderungsrate von 2-mal SpringBoot und 3-mal Dropwizard. Datenbankabfrage: HibernateORM von SpringBoot ist besser als ORM von Vert.x und Dropwizard. Caching-Vorgänge: Der Hazelcast-Client von Vert.x ist den Caching-Mechanismen von SpringBoot und Dropwizard überlegen. Geeignetes Framework: Wählen Sie entsprechend den Anwendungsanforderungen. Vert.x eignet sich für leistungsstarke Webdienste, SpringBoot eignet sich für datenintensive Anwendungen und Dropwizard eignet sich für Microservice-Architekturen.

Der Leistungsvergleich der PHP-Methoden zum Umdrehen von Array-Schlüsselwerten zeigt, dass die Funktion array_flip() in großen Arrays (mehr als 1 Million Elemente) eine bessere Leistung als die for-Schleife erbringt und weniger Zeit benötigt. Die for-Schleifenmethode zum manuellen Umdrehen von Schlüsselwerten dauert relativ lange.

Zu den wirksamen Techniken zur Optimierung der C++-Multithread-Leistung gehört die Begrenzung der Anzahl der Threads, um Ressourcenkonflikte zu vermeiden. Verwenden Sie leichte Mutex-Sperren, um Konflikte zu reduzieren. Optimieren Sie den Umfang der Sperre und minimieren Sie die Wartezeit. Verwenden Sie sperrenfreie Datenstrukturen, um die Parallelität zu verbessern. Vermeiden Sie geschäftiges Warten und benachrichtigen Sie Threads über Ereignisse über die Ressourcenverfügbarkeit.

Funktionstests überprüfen die Funktionsfunktionalität durch Black-Box- und White-Box-Tests, während die Codeabdeckung den Teil des Codes misst, der von Testfällen abgedeckt wird. Verschiedene Sprachen (wie Python und Java) verfügen über unterschiedliche Test-Frameworks, Abdeckungstools und Funktionen. Praktische Fälle zeigen, wie man Unittest und Coverage von Python sowie JUnit und JaCoCo von Java für Funktionstests und Coverage-Bewertung verwendet.

Die Leistung verschiedener PHP-Funktionen ist entscheidend für die Anwendungseffizienz. Zu den Funktionen mit besserer Leistung gehören echo und print, während Funktionen wie str_replace, array_merge und file_get_contents eine langsamere Leistung aufweisen. Beispielsweise wird die Funktion str_replace zum Ersetzen von Zeichenfolgen verwendet und weist eine mäßige Leistung auf, während die Funktion sprintf zum Formatieren von Zeichenfolgen verwendet wird. Die Leistungsanalyse zeigt, dass die Ausführung eines Beispiels nur 0,05 Millisekunden dauert, was beweist, dass die Funktion eine gute Leistung erbringt. Daher kann der kluge Einsatz von Funktionen zu schnelleren und effizienteren Anwendungen führen.

Überlegungen zur Leistung statischer Funktionen lauten wie folgt: Codegröße: Statische Funktionen sind normalerweise kleiner, da sie keine Mitgliedsvariablen enthalten. Speicherbelegung: Gehört zu keinem bestimmten Objekt und belegt keinen Objektspeicher. Aufrufaufwand: geringer, kein Aufruf über Objektzeiger oder Referenz erforderlich. Multithread-sicher: Im Allgemeinen threadsicher, da keine Abhängigkeit von Klasseninstanzen besteht.
