Heim Datenbank MySQL-Tutorial Hive与Oracle表关联语句对比

Hive与Oracle表关联语句对比

Jun 07, 2016 pm 04:48 PM

在将ORACLE存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。本文详细对比了ORALCE和HIVE的各种表关联语法,包

在将Oracle存储过程迁移到HIVE平台时,不可避免地会遇到表关联的相应语法问题。

本文详细对比了ORALCE和HIVE的各种表关联语法,,包括内关联,左,右关联,全外关联和笛卡尔积。

一.创建表

ORACLE:

create table a
(
a1  number(10),
a2 varchar2(50)
);

create table b
(
b1  number(10),
b2 varchar2(50)
);

HIVE:

CREATE TABLE IF NOT EXISTS a (
a1 STRING,
a2 STRING)
COMMENT 'TABLE A'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '|'
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES ( 'created_at'='2014-04-28','creator'='HENRY' );

二.插入数据

ORACLE:

insert into a(a1,a2) values(1,'X');
insert into a(a1,a2) values(2,'Y');
insert into a(a1,a2) values(3,'Z');

insert into b(b1,b2) values(1,'X');
insert into b(b1,b2) values(2,'Y');
insert into b(b1,b2) values(4,'Z');

HIVE:

hive (default)> load data local inpath './data1' into table a;
Copying data from file:/home/Hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.a
Table default.a stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 1.961 seconds
hive (default)> load data local inpath './data1' into table b;
Copying data from file:/home/hadoop/roger/sql/renguihe/data
Copying file: file:/home/hadoop/roger/sql/renguihe/data
Loading data to table default.b
Table default.b stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 12, raw_data_size: 0]
OK
Time taken: 0.392 seconds

其中data1数据文件内容为:

1|X
2|Y
3|Z

data2数据文件内容为:

1|X
2|Y
4|Z

三.等值关联

ORACLE:

select * from a,b where a.a1 = b.b1;

或:

select * from a join b on a.a1 = b.b1;

结果如下图所示:

 

HIVE:

select * from a join b on a.a1 = b.b1;

注意HIVE中不能使用where来表示关联条件。

执行过程及结果如下图所示:

hive (default)> select * from a join b on a.a1 = b.b1;       
Total MapReduce jobs = 1
setting HADOOP_USER_NAME        hadoop
Execution log at: /tmp/hadoop/.log
2014-04-29 09:13:27    Starting to launch local task to process map join;      maximum memory = 1908932608
2014-04-29 09:13:27    Processing rows:        3      Hashtable size: 3      Memory usage:  110981704      rate:  0.058
2014-04-29 09:13:27    Dump the hashtable into file: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable
2014-04-29 09:13:27    Upload 1 File to: file:/tmp/hadoop/hive_2014-04-29_09-13-25_273_8486588204512196396/-local-10002/HashTable-Stage-3/MapJoin-mapfile00--.hashtable File size: 438
2014-04-29 09:13:27    End of local task; Time Taken: 0.339 sec.
Execution completed successfully
Mapred Local Task Succeeded . Convert the Join into MapJoin
Mapred Local Task Succeeded . Convert the Join into MapJoin
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201404251509_0131, Tracking URL = IP:50030/jobdetails.jsp?jobid=job_201404251509_0131
Kill
Command = /home/hadoop/package/hadoop-1.0.4/libexec/../bin/hadoop job  -kill job_201404251509_0131
Hadoop job information for Stage-3: number of mappers: 1; number of reducers: 0
2014-04-29 09:13:39,979 Stage-3 map = 0%,  reduce = 0%
2014-04-29 09:13:46,025 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:47,034 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:48,044 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:49,052 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:50,061 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:51,069 Stage-3 map = 100%,  reduce = 0%, Cumulative CPU 1.59 sec
2014-04-29 09:13:52,077 Stage-3 map = 100%,  reduce = 100%, Cumulative CPU 1.59 sec
MapReduce Total cumulative CPU time: 1 seconds 590 msec
Ended Job = job_201404251509_0131
MapReduce Jobs Launched:
Job 0: Map: 1  Cumulative CPU: 1.59 sec  HDFS Read: 211 HDFS Write: 16 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 590 msec
OK
a1      a2      b1      b2
1      X      1      X
2      Y      2      Y

更多详情见请继续阅读下一页的精彩内容

linux

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Apr 09, 2025 am 12:05 AM

Die volle Tabellenscannung kann in MySQL schneller sein als die Verwendung von Indizes. Zu den spezifischen Fällen gehören: 1) das Datenvolumen ist gering; 2) Wenn die Abfrage eine große Datenmenge zurückgibt; 3) wenn die Indexspalte nicht sehr selektiv ist; 4) Wenn die komplexe Abfrage. Durch Analyse von Abfrageplänen, Optimierung von Indizes, Vermeidung von Überindex und regelmäßiger Wartung von Tabellen können Sie in praktischen Anwendungen die besten Auswahlmöglichkeiten treffen.

Erläutern Sie InnoDB Volltext-Suchfunktionen. Erläutern Sie InnoDB Volltext-Suchfunktionen. Apr 02, 2025 pm 06:09 PM

Die Volltext-Suchfunktionen von InnoDB sind sehr leistungsfähig, was die Effizienz der Datenbankabfrage und die Fähigkeit, große Mengen von Textdaten zu verarbeiten, erheblich verbessern kann. 1) InnoDB implementiert die Volltext-Suche durch invertierte Indexierung und unterstützt grundlegende und erweiterte Suchabfragen. 2) Verwenden Sie die Übereinstimmung und gegen Schlüsselwörter, um den Booleschen Modus und die Phrasesuche zu unterstützen. 3) Die Optimierungsmethoden umfassen die Verwendung der Word -Segmentierungstechnologie, die regelmäßige Wiederaufbauung von Indizes und die Anpassung der Cache -Größe, um die Leistung und Genauigkeit zu verbessern.

Kann ich MySQL unter Windows 7 installieren? Kann ich MySQL unter Windows 7 installieren? Apr 08, 2025 pm 03:21 PM

Ja, MySQL kann unter Windows 7 installiert werden, und obwohl Microsoft Windows 7 nicht mehr unterstützt hat, ist MySQL dennoch kompatibel damit. Während des Installationsprozesses sollten jedoch folgende Punkte festgestellt werden: Laden Sie das MySQL -Installationsprogramm für Windows herunter. Wählen Sie die entsprechende Version von MySQL (Community oder Enterprise) aus. Wählen Sie während des Installationsprozesses das entsprechende Installationsverzeichnis und das Zeichen fest. Stellen Sie das Stammbenutzerkennwort ein und behalten Sie es ordnungsgemäß. Stellen Sie zum Testen eine Verbindung zur Datenbank her. Beachten Sie die Kompatibilitäts- und Sicherheitsprobleme unter Windows 7, und es wird empfohlen, auf ein unterstütztes Betriebssystem zu aktualisieren.

MySQL: Einfache Konzepte für einfaches Lernen MySQL: Einfache Konzepte für einfaches Lernen Apr 10, 2025 am 09:29 AM

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Apr 02, 2025 pm 06:25 PM

Der Unterschied zwischen Clustered Index und nicht klusterer Index ist: 1. Clustered Index speichert Datenzeilen in der Indexstruktur, die für die Abfrage nach Primärschlüssel und Reichweite geeignet ist. 2. Der nicht klusterierte Index speichert Indexschlüsselwerte und -zeiger auf Datenzeilen und ist für nicht-primäre Schlüsselspaltenabfragen geeignet.

Kann MySQL und Mariadb koexistieren? Kann MySQL und Mariadb koexistieren? Apr 08, 2025 pm 02:27 PM

MySQL und Mariadb können koexistieren, müssen jedoch mit Vorsicht konfiguriert werden. Der Schlüssel besteht darin, jeder Datenbank verschiedene Portnummern und Datenverzeichnisse zuzuordnen und Parameter wie Speicherzuweisung und Cache -Größe anzupassen. Verbindungspooling, Anwendungskonfiguration und Versionsunterschiede müssen ebenfalls berücksichtigt und sorgfältig getestet und geplant werden, um Fallstricke zu vermeiden. Das gleichzeitige Ausführen von zwei Datenbanken kann in Situationen, in denen die Ressourcen begrenzt sind, zu Leistungsproblemen führen.

Die Beziehung zwischen MySQL -Benutzer und Datenbank Die Beziehung zwischen MySQL -Benutzer und Datenbank Apr 08, 2025 pm 07:15 PM

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

Erklären Sie verschiedene Arten von MySQL-Indizes (B-Tree, Hash, Volltext, räumlich). Erklären Sie verschiedene Arten von MySQL-Indizes (B-Tree, Hash, Volltext, räumlich). Apr 02, 2025 pm 07:05 PM

MySQL unterstützt vier Indextypen: B-Tree, Hash, Volltext und räumlich. 1.B-Tree-Index ist für die gleichwertige Suche, eine Bereichsabfrage und die Sortierung geeignet. 2. Hash -Index ist für gleichwertige Suche geeignet, unterstützt jedoch keine Abfrage und Sortierung von Bereichs. 3. Die Volltextindex wird für die Volltext-Suche verwendet und ist für die Verarbeitung großer Mengen an Textdaten geeignet. 4. Der räumliche Index wird für die Abfrage für Geospatial -Daten verwendet und ist für GIS -Anwendungen geeignet.

See all articles