Heim Datenbank MySQL-Tutorial 32个字节限制Oracle直方图优化

32个字节限制Oracle直方图优化

Jun 07, 2016 pm 05:13 PM

Oracle直方图的限制往往让不少初学者头痛mdash;mdash;超过32字节不显示,以及前32字节相同产生错误。由于OBJECT_TYPE列上的DIS

Oracle直方图的限制往往让不少初学者头痛——超过32字节不显示,以及前32字节相同产生错误。

由于OBJECT_TYPE列上的DISTINCT值的个数小于254,ORACLE将会在此列上建立频率直方图,优化器将会准确的估算出CONTENTS='TABLE'的查询返回37条记录。

下面看看如下的情况:

SQL> TRUNCATE TABLE T;

Table truncated.

SQL> SET AUTOT OFF
SQL> INSERT INTO T
  2  SELECT ROWNUM,OBJECT_NAME,RPAD('*',32,'*')||OBJECT_TYPE
  3  FROM ALL_OBJECTS WHERE ROWNUM

10000 rows created.

SQL> COMMIT;

Commit complete.

SQL> SELECT COUNT(1) FROM T;

  COUNT(1)
----------
     10000

SQL> SELECT CONTENTS ,COUNT(1) FROM T GROUP BY CONTENTS ;

CONTENTS                                             COUNT(1)
-------------------------------------------------- ----------
********************************SEQUENCE                    1
********************************LIBRARY                     3
********************************WINDOW GROUP                1
********************************INDEX PARTITION           347
********************************PACKAGE                   164
********************************SCHEDULE                    1
********************************TABLE PARTITION            25
********************************VIEW                     1150
********************************TABLE                      37
********************************PROCEDURE                  11
********************************CONSUMER GROUP              2
********************************INDEX SUBPARTITION       3328
********************************OPERATOR                   15
********************************WINDOW                      2
********************************INDEX                      34
********************************FUNCTION                   60
********************************SYNONYM                  2552
********************************TABLE SUBPARTITION       1714
********************************TYPE                      538
********************************JOB CLASS                   1
********************************PACKAGE BODY               13
********************************EVALUATION CONTEXT          1

22 rows selected.


SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS(USER,'T',method_opt=>'FOR COLUMNS CONTENTS SIZE 254');

PL/SQL procedure successfully completed.

SQL> SELECT * FROM T WHERE CONTENTS='********************************TABLE';

Execution Plan
----------------------------------------------------------
Plan hash value: 2153619298

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      | 10000 |   654K|    24   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T    | 10000 |   654K|    24   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("CONTENTS"='********************************TABLE')


由于CONTENTS列的前32位都一样,ORACLE在收集统计信息直方图的时候只考虑前32位,这会导致ORACLE认为
所有的记录的列CONTENTS都是相同的,因此优化器估算返回的行数为10000。

 

SQL> UPDATE T SET CONTENTS=SUBSTR(CONTENTS,2);

10000 rows updated.

SQL> COMMIT;

Commit complete.

SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS(USER,'T',method_opt=>'FOR COLUMNS CONTENTS SIZE 254');

PL/SQL procedure successfully completed.

SQL> SELECT CONTENTS ,COUNT(1) FROM T GROUP BY CONTENTS ORDER BY 1;

CONTENTS                                             COUNT(1)
-------------------------------------------------- ----------
*******************************CONSUMER GROUP               2
*******************************EVALUATION CONTEXT           1
*******************************FUNCTION                    60
*******************************INDEX                       34
*******************************INDEX PARTITION            347
*******************************INDEX SUBPARTITION        3328
*******************************JOB CLASS                    1
*******************************LIBRARY                      3
*******************************OPERATOR                    15
*******************************PACKAGE                    164
*******************************PACKAGE BODY                13
*******************************PROCEDURE                   11
*******************************SCHEDULE                     1
*******************************SEQUENCE                     1
*******************************SYNONYM                   2552
*******************************TABLE                       37
*******************************TABLE PARTITION             25
*******************************TABLE SUBPARTITION        1714
*******************************TYPE                       538
*******************************VIEW                      1150
*******************************WINDOW                       2
*******************************WINDOW GROUP                 1

SQL> SELECT SUBSTR(CONTENTS,1,32),COUNT(1) FROM T GROUP BY SUBSTR(CONTENTS,1,32);

SUBSTR(CONTENTS,1,32)                      COUNT(1)
---------------------------------------- ----------
*******************************E                  1
*******************************J                  1
*******************************P                188
*******************************C                  2
*******************************S               2554
*******************************T               2314
*******************************F                 60
*******************************O                 15
*******************************L                  3
*******************************W                  3
*******************************I               3709
*******************************V               1150

12 rows selected.

 


SQL> SET AUTOT TRACEONLY EXP
SQL> SELECT * FROM T WHERE CONTENTS='*******************************TABLE';

Execution Plan
----------------------------------------------------------
Plan hash value: 2153619298

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |  2314 |   149K|    24   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T    |  2314 |   149K|    24   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("CONTENTS"='*******************************TABLE')

SQL> SELECT * FROM T WHERE CONTENTS='*******************************TYPE';

Execution Plan
----------------------------------------------------------
Plan hash value: 2153619298

--------------------------------------------------------------------------
| Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |      |  2314 |   149K|    24   (0)| 00:00:01 |
|*  1 |  TABLE ACCESS FULL| T    |  2314 |   149K|    24   (0)| 00:00:01 |
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter("CONTENTS"='*******************************TYPE')


从上面可以看出,ORACLE只考虑前32个字节,下面每一个值查询的估算行数都是等于3者实际记录数之和。

*******************************TABLE                       37
*******************************TABLE PARTITION             25
*******************************TABLE SUBPARTITION        1714
*******************************TYPE                       538

更多Oracle相关信息见Oracle 专题页面 ?tid=12

linux

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Wann könnte ein vollständiger Tabellen -Scan schneller sein als einen Index in MySQL? Apr 09, 2025 am 12:05 AM

Die volle Tabellenscannung kann in MySQL schneller sein als die Verwendung von Indizes. Zu den spezifischen Fällen gehören: 1) das Datenvolumen ist gering; 2) Wenn die Abfrage eine große Datenmenge zurückgibt; 3) wenn die Indexspalte nicht sehr selektiv ist; 4) Wenn die komplexe Abfrage. Durch Analyse von Abfrageplänen, Optimierung von Indizes, Vermeidung von Überindex und regelmäßiger Wartung von Tabellen können Sie in praktischen Anwendungen die besten Auswahlmöglichkeiten treffen.

Erläutern Sie InnoDB Volltext-Suchfunktionen. Erläutern Sie InnoDB Volltext-Suchfunktionen. Apr 02, 2025 pm 06:09 PM

Die Volltext-Suchfunktionen von InnoDB sind sehr leistungsfähig, was die Effizienz der Datenbankabfrage und die Fähigkeit, große Mengen von Textdaten zu verarbeiten, erheblich verbessern kann. 1) InnoDB implementiert die Volltext-Suche durch invertierte Indexierung und unterstützt grundlegende und erweiterte Suchabfragen. 2) Verwenden Sie die Übereinstimmung und gegen Schlüsselwörter, um den Booleschen Modus und die Phrasesuche zu unterstützen. 3) Die Optimierungsmethoden umfassen die Verwendung der Word -Segmentierungstechnologie, die regelmäßige Wiederaufbauung von Indizes und die Anpassung der Cache -Größe, um die Leistung und Genauigkeit zu verbessern.

Kann ich MySQL unter Windows 7 installieren? Kann ich MySQL unter Windows 7 installieren? Apr 08, 2025 pm 03:21 PM

Ja, MySQL kann unter Windows 7 installiert werden, und obwohl Microsoft Windows 7 nicht mehr unterstützt hat, ist MySQL dennoch kompatibel damit. Während des Installationsprozesses sollten jedoch folgende Punkte festgestellt werden: Laden Sie das MySQL -Installationsprogramm für Windows herunter. Wählen Sie die entsprechende Version von MySQL (Community oder Enterprise) aus. Wählen Sie während des Installationsprozesses das entsprechende Installationsverzeichnis und das Zeichen fest. Stellen Sie das Stammbenutzerkennwort ein und behalten Sie es ordnungsgemäß. Stellen Sie zum Testen eine Verbindung zur Datenbank her. Beachten Sie die Kompatibilitäts- und Sicherheitsprobleme unter Windows 7, und es wird empfohlen, auf ein unterstütztes Betriebssystem zu aktualisieren.

MySQL: Einfache Konzepte für einfaches Lernen MySQL: Einfache Konzepte für einfaches Lernen Apr 10, 2025 am 09:29 AM

MySQL ist ein Open Source Relational Database Management System. 1) Datenbank und Tabellen erstellen: Verwenden Sie die Befehle erstellte und creatEtable. 2) Grundlegende Vorgänge: Einfügen, aktualisieren, löschen und auswählen. 3) Fortgeschrittene Operationen: Join-, Unterabfrage- und Transaktionsverarbeitung. 4) Debugging -Fähigkeiten: Syntax, Datentyp und Berechtigungen überprüfen. 5) Optimierungsvorschläge: Verwenden Sie Indizes, vermeiden Sie ausgewählt* und verwenden Sie Transaktionen.

Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Differenz zwischen Clustered Index und nicht klusterer Index (Sekundärindex) in InnoDB. Apr 02, 2025 pm 06:25 PM

Der Unterschied zwischen Clustered Index und nicht klusterer Index ist: 1. Clustered Index speichert Datenzeilen in der Indexstruktur, die für die Abfrage nach Primärschlüssel und Reichweite geeignet ist. 2. Der nicht klusterierte Index speichert Indexschlüsselwerte und -zeiger auf Datenzeilen und ist für nicht-primäre Schlüsselspaltenabfragen geeignet.

Die Beziehung zwischen MySQL -Benutzer und Datenbank Die Beziehung zwischen MySQL -Benutzer und Datenbank Apr 08, 2025 pm 07:15 PM

In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

Kann MySQL und Mariadb koexistieren? Kann MySQL und Mariadb koexistieren? Apr 08, 2025 pm 02:27 PM

MySQL und Mariadb können koexistieren, müssen jedoch mit Vorsicht konfiguriert werden. Der Schlüssel besteht darin, jeder Datenbank verschiedene Portnummern und Datenverzeichnisse zuzuordnen und Parameter wie Speicherzuweisung und Cache -Größe anzupassen. Verbindungspooling, Anwendungskonfiguration und Versionsunterschiede müssen ebenfalls berücksichtigt und sorgfältig getestet und geplant werden, um Fallstricke zu vermeiden. Das gleichzeitige Ausführen von zwei Datenbanken kann in Situationen, in denen die Ressourcen begrenzt sind, zu Leistungsproblemen führen.

Erklären Sie verschiedene Arten von MySQL-Indizes (B-Tree, Hash, Volltext, räumlich). Erklären Sie verschiedene Arten von MySQL-Indizes (B-Tree, Hash, Volltext, räumlich). Apr 02, 2025 pm 07:05 PM

MySQL unterstützt vier Indextypen: B-Tree, Hash, Volltext und räumlich. 1.B-Tree-Index ist für die gleichwertige Suche, eine Bereichsabfrage und die Sortierung geeignet. 2. Hash -Index ist für gleichwertige Suche geeignet, unterstützt jedoch keine Abfrage und Sortierung von Bereichs. 3. Die Volltextindex wird für die Volltext-Suche verwendet und ist für die Verarbeitung großer Mengen an Textdaten geeignet. 4. Der räumliche Index wird für die Abfrage für Geospatial -Daten verwendet und ist für GIS -Anwendungen geeignet.

See all articles