在优化SQL语句中使用虚拟索引
是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的
定义:虚拟索引(virtual index) 是指没有创建对应的物理段的索引。
虚拟索引的目的:是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的时候,通常会查看需要优化的语句的执行计划,在考虑是否需要在表的某列上建立索引时就可以用到虚拟索引。虚拟索引建立的时候因为其没有消耗主机的相关资源,因此可以在相当快的时间内建立完成。
下面我们来看一下试验:
首先建立两张测试表
create table bigtab as select rownum as id,a.* from sys.all_objects a;
create table smalltab as select rownum as id,a.* from sys.all_tables a;
多次运行以下语句,,以插入多一些测试数据:
insert into bigtab select ronum as id,a.* from sys.all_objects a;
insert into smalltab select rownum as id,a.* from sys.all_tables a;
查看需要执行语句的执行计划:
SQL> explain plan for select count(*) from bigtab a,smalltab b where a.object_name=b.table_name;
Explained.
SQL> select * from table(dbms_xplan.display());
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 3089226980
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 40 | 518 (1)| 00:00:07 |
| 1 | SORT AGGREGATE | | 1 | 40 | | |
|* 2 | HASH JOIN | | 99838 | 3899K| 518 (1)| 00:00:07 |
| 3 | TABLE ACCESS FULL| SMALLTAB | 15311 | 299K| 172 (0)| 00:00:03 |
| 4 | TABLE ACCESS FULL| BIGTAB | 85284 | 1665K| 345 (1)| 00:00:05 |
--------------------------------------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."OBJECT_NAME"="B"."TABLE_NAME")
16 rows selected.
下面我们在两个表上创建两个虚拟索引,分别在object_name和table_name列上,看看优化器是否会使用这两个索引,以及优化器的成本会如何变化。
SQL> show parameter _use_nosegment
SQL> alter session set "_use_nosegment_indexes"=true;
Session altered.
SQL> show parameter _use_nosegment
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
_use_nosegment_indexes boolean TRUE
SQL> create index big_ind on bigtab(object_name) nosegment;
Index created.
SQL> create index small_ind on smalltab(table_name) nosegment;

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

In dem Artikel werden mithilfe der Änderungstabelle von MySQL Tabellen, einschließlich Hinzufügen/Löschen von Spalten, Umbenennung von Tabellen/Spalten und Ändern der Spaltendatentypen, erläutert.

In Artikel werden die Konfiguration der SSL/TLS -Verschlüsselung für MySQL, einschließlich der Erzeugung und Überprüfung von Zertifikaten, erläutert. Das Hauptproblem ist die Verwendung der Sicherheitsauswirkungen von selbstsignierten Zertifikaten. [Charakterzahl: 159]

In Artikel werden Strategien zum Umgang mit großen Datensätzen in MySQL erörtert, einschließlich Partitionierung, Sharding, Indexierung und Abfrageoptimierung.

In Artikel werden beliebte MySQL -GUI -Tools wie MySQL Workbench und PhpMyAdmin beschrieben, die ihre Funktionen und ihre Eignung für Anfänger und fortgeschrittene Benutzer vergleichen. [159 Charaktere]

In dem Artikel werden in MySQL die Ablagerung von Tabellen mithilfe der Drop -Tabellenerklärung erörtert, wobei Vorsichtsmaßnahmen und Risiken betont werden. Es wird hervorgehoben, dass die Aktion ohne Backups, die Detaillierung von Wiederherstellungsmethoden und potenzielle Produktionsumfeldgefahren irreversibel ist.

In Artikeln werden ausländische Schlüssel zur Darstellung von Beziehungen in Datenbanken erörtert, die sich auf Best Practices, Datenintegrität und gemeinsame Fallstricke konzentrieren.

In dem Artikel werden in verschiedenen Datenbanken wie PostgreSQL, MySQL und MongoDB Indizes für JSON -Spalten in verschiedenen Datenbanken erstellt, um die Abfrageleistung zu verbessern. Es erläutert die Syntax und die Vorteile der Indizierung spezifischer JSON -Pfade und listet unterstützte Datenbanksysteme auf.

Artikel erläutert die Sicherung von MySQL gegen SQL-Injektions- und Brute-Force-Angriffe unter Verwendung vorbereiteter Aussagen, Eingabevalidierung und starken Kennwortrichtlinien (159 Zeichen).
