Oracle 数据库针对表主键列并发导致行级锁简单演示
本文简单演示针对表主键并发导致的行级锁,锁的产生是因为并发。没有并发,就没有锁。并发的产生是因为系统需要,系统需要是因为用户需要,感兴趣的你可以参考下哈,希望可以帮助到你
本文内容
•软件环境
•简单演示 Oracle 数据库并发导致行级锁
本文简单演示针对表主键并发导致的行级锁。并发是两个以上的用户对同样的数据进行修改(包括插入、删除和修改)。锁的产生是因为并发。没有并发,就没有锁。并发的产生是因为系统需要,系统需要是因为用户需要。
软件环境
--------------------------------------------------------------------------------
•Windows 2003 Server
•Oracle 11g Release 1 (11.1)
简单演示 Oracle 数据库并发导致行级锁
首先,打开一个会话 session 1,执行如下操作:
代码如下:
SQL> select distinct sid from V$mystat;
SID
----------
118
SQL> create table t (x int primary key);
表已创建。
SQL> insert into t values(1);
已创建 1 行。
SQL> update t set x=10 where x=1;
已更新 1 行。
SQL>
先查看本次会话的 SID,然后创建一个表 t,只有一个名为 x 的字段,且该字段为主键,插入一条数据,并更新该数据。
接下来,打开另一个会话 session 2:
代码如下:
SQL> select distinct sid from V$mystat;
SID
----------
137
SQL> update t set x=10 where x=1;
此时,该会话被“卡”在这里不动。只是光标一直在闪……因为,session 2 被 session 1 阻塞。
现在,查看锁定视图 V$LOCK。
代码如下:
SQL> select sid,type,id1,id2,lmode,request,block
2 from v$lock where sid in (118,137)
3 order by sid;
已选择6行。
SQL>
说明:“TYPE”列表示锁的类型;“LMODE”列表示锁的模式;“ID1”和“ID2”列是锁的相关信息。“REQUEST”列是正在什么锁。
SID=118 是第一个会话,SID=137 是第二个会话。第三行,第一个会话 BLOCK=1 表示这个会话正在阻塞其他会话,LMODE=6 表示锁的模式,即行级排他锁。第六行,第二个会话 REQUEST=6 表示当前会话正在等待一个 LMODE=6 的锁。注意,第三行和第六行的 ID1 和 ID2 列完全相同。因为它们指向统一资源,只不过一个是资源的拥有者(SID=118),一个是资源的等待者(SID=137)。
通过这个视图,很容易发现所在——故障定位(trouble shooting)。会话 2 之所以被“卡”住,是因为会话 1 还没提交,而在这张表上,又恰好有要求列值唯一性约束。
通过 SID 号,查看视图 V$SESSION 就可以确定用户信息。
代码如下:
SQL> select machine from v$session where sid in (118,137);
MACHINE
----------------------------------------------------------------
NUODE\LN
NUODE\LN
SQL>
因为,两个会话是同一台机器,所以名字一样。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Parallelitäts- und Multithreading-Techniken mithilfe von Java-Funktionen können die Anwendungsleistung verbessern, einschließlich der folgenden Schritte: Parallelitäts- und Multithreading-Konzepte verstehen. Nutzen Sie die Parallelitäts- und Multithreading-Bibliotheken von Java wie ExecutorService und Callable. Üben Sie Fälle wie die Multithread-Matrixmultiplikation, um die Ausführungszeit erheblich zu verkürzen. Genießen Sie die Vorteile einer erhöhten Reaktionsgeschwindigkeit der Anwendung und einer optimierten Verarbeitungseffizienz durch Parallelität und Multithreading.

Parallelität und Coroutinen werden im GoAPI-Design für Folgendes verwendet: Hochleistungsverarbeitung: Mehrere Anfragen gleichzeitig verarbeiten, um die Leistung zu verbessern. Asynchrone Verarbeitung: Verwenden Sie Coroutinen, um Aufgaben (z. B. das Senden von E-Mails) asynchron zu verarbeiten und den Hauptthread freizugeben. Stream-Verarbeitung: Verwenden Sie Coroutinen, um Datenströme (z. B. Datenbanklesevorgänge) effizient zu verarbeiten.

Das Testen gleichzeitiger Funktionen in Einheiten ist von entscheidender Bedeutung, da dies dazu beiträgt, ihr korrektes Verhalten in einer gleichzeitigen Umgebung sicherzustellen. Beim Testen gleichzeitiger Funktionen müssen grundlegende Prinzipien wie gegenseitiger Ausschluss, Synchronisation und Isolation berücksichtigt werden. Gleichzeitige Funktionen können Unit-Tests unterzogen werden, indem Rennbedingungen simuliert, getestet und Ergebnisse überprüft werden.

Transaktionen gewährleisten die Integrität der Datenbankdaten, einschließlich Atomizität, Konsistenz, Isolation und Haltbarkeit. JDBC verwendet die Verbindungsschnittstelle, um die Transaktionssteuerung bereitzustellen (setAutoCommit, Commit, Rollback). Parallelitätskontrollmechanismen koordinieren gleichzeitige Vorgänge mithilfe von Sperren oder optimistischer/pessimistischer Parallelitätskontrolle, um eine Transaktionsisolation zu erreichen und Dateninkonsistenzen zu verhindern.

Die Java-Parallelitätsbibliothek bietet eine Vielzahl von Tools, darunter: Thread-Pool: Wird zum Verwalten von Threads und zur Verbesserung der Effizienz verwendet. Sperre: Wird zum Synchronisieren des Zugriffs auf gemeinsam genutzte Ressourcen verwendet. Barriere: Wird verwendet, um darauf zu warten, dass alle Threads einen bestimmten Punkt erreichen. Atomare Operationen: unteilbare Einheiten, die die Thread-Sicherheit gewährleisten. Gleichzeitige Warteschlange: Eine Thread-sichere Warteschlange, die den gleichzeitigen Betrieb mehrerer Threads ermöglicht.

Parallelitätsprobleme in PHP-Multithread-Funktionen können durch die Verwendung von Synchronisierungstools (z. B. Mutex-Sperren) gelöst werden, um den Multithread-Zugriff auf gemeinsam genutzte Ressourcen zu verwalten. Verwenden Sie Funktionen, die gegenseitige Ausschlussoptionen unterstützen, um sicherzustellen, dass die Funktion nicht erneut aufgerufen wird, während ein anderer Thread ausgeführt wird. Wickeln Sie nicht wiedereintrittsfähige Funktionen in synchronisierte Blöcke ein, um Funktionsaufrufe zu schützen.

Atomare Klassen sind threadsichere Klassen in Java, die unterbrechungsfreie Vorgänge ermöglichen und für die Gewährleistung der Datenintegrität in gleichzeitigen Umgebungen von entscheidender Bedeutung sind. Java stellt die folgenden atomaren Klassen bereit: AtomicIntegerAtomicLongAtomicReferenceAtomicBoolean Diese Klassen stellen Methoden zum Abrufen, Festlegen und Vergleichen von Werten bereit, um sicherzustellen, dass der Vorgang atomar ist und nicht durch Threads unterbrochen wird. Atomare Klassen sind nützlich, wenn Sie mit gemeinsam genutzten Daten arbeiten und Datenbeschädigungen verhindern, z. B. bei der Verwaltung gemeinsam genutzter Zähler für den gleichzeitigen Zugriff.

Deadlock-Probleme in Multithread-Umgebungen können verhindert werden, indem eine feste Sperrreihenfolge definiert und Sperren nacheinander erworben werden. Legen Sie einen Timeout-Mechanismus fest, um das Warten abzubrechen, wenn die Sperre nicht innerhalb der angegebenen Zeit erhalten werden kann. Verwenden Sie den Deadlock-Erkennungsalgorithmus, um den Thread-Deadlock-Status zu erkennen und Wiederherstellungsmaßnahmen zu ergreifen. In der Praxis definiert das Ressourcenverwaltungssystem eine globale Sperrreihenfolge für alle Ressourcen und zwingt Threads, die erforderlichen Sperren zu erwerben, um Deadlocks zu vermeiden.
