MySQL中Stmt 预处理提高效率问题的小研究
在oracle数据库中,有一个变量绑定的用法,很多人都比较熟悉,可以调高数据库效率,应对高并发等,好吧,这其中并不包括我,当同事问我MySQL中有没有类似的写法时,我是很茫然的,于是就上网查,找到了如下一种写法
代码如下:DELIMITER $$
set @stmt = 'select userid,username from myuser where userid between ? and ?';
prepare s1 from @stmt;
set @s1 = 2;
set @s2 = 100;
execute s1 using @s1,@s2;
deallocate prepare s1;
$$
DELIMITER ;
用这种形式写的查询,可以随意替换参数,给出代码的人称之为预处理,我想这个应该就是MySQL中的变量绑定吧……但是,在查资料的过程中我却听到了两种声音,一种是,MySQL中有类似Oracle变量绑定的写法,但没有其实际作用,也就是只能方便编写,不能提高效率,这种说法在几个09年的帖子中看到:
http://www.itpub.net/thread-1210292-1-1.html
http://cuda.itpub.net/redirect.php?fid=73&tid=1210572&goto=nextnewset
另一种说法是MySQL中的变量绑定是能确实提高效率的,这个是希望有的,那到底有木有,还是自己去试验下吧。
试验是在本机进行的,数据量比较小,具体数字并不具有实际意义,但是,能用来说明一些问题,数据库版本是mysql-5.1.57-win32免安装版。
本着对数据库不是很熟悉的态度^_^,试验过程中走了不少弯路,此文以结论为主,就不列出实验的设计过程,文笔不好,文章写得有点枯燥,写出来是希望有人来拍砖,因为我得出的结论是:预处理在有没有cache的情况下的执行效率都不及直接执行…… 我对自己的实验结果不愿接受。。如果说预处理只为了规范下Query,使cache命中率提高的话个人觉得大材小用了,希望有比较了解的人能指出事实究竟是什么样子的——NewSilen
实验准备
第一个文件NormalQuery.sql
代码如下:
Set profiling=1;
Select * From MyTable where DictID = 100601000004;
Select DictID from MyTable limit 1,100;
Select DictID from MyTable limit 2,100;
/*从limit 1,100 到limit 100,100 此处省略重复代码*/
......
Select DictID from MyTable limit 100,100;
SELECT query_id,seq,STATE,10000*DURATION FROM information_schema.profiling INTO OUTFILE 'd:/NormalResults.csv' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
第二个sql文件 StmtQuery.sql
代码如下:
Set profiling=1;
Select * From MyTable where DictID = 100601000004;
set @stmt = 'Select DictID from MyTable limit ?,?';
prepare s1 from @stmt;
set @s = 100;
set @s1 = 101;
set @s2 = 102;
......
set @s100 =200;
execute s1 using @s1,@s;
execute s1 using @s2,@s;
......
execute s1 using @s100,@s;
SELECT query_id,seq,STATE,10000*DURATION FROM information_schema.profiling INTO OUTFILE 'd:/StmtResults.csv' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
做几点小说明:
1. Set profiling=1; 执行此语句之后,可以从information_schema.profiling这张表中读出语句执行的详细信息,其实包含不少内容,包括我需要的时间信息,这是张临时表,每新开一个会话都要重新设置profiling属性才能从这张表中读取数据
2. Select * From MyTable where DictID = 100601000004;
这行代码貌似和我们的实验没什么关系,本来我也是这么认为的,之所以加这句,是我在之前的摸索中发现,执行过程中有个步骤是open table,如果是第一次打开某张表,那时间是相当长的,所以在执行后面的语句前,我先执行了这行代码打开试验用的表
3. MySQL默认在information_schema.profiling表中保存的查询历史是15条,可以修改profiling_history_size属性来进行调整,我希望他大一些让我能一次取出足够的数据,不过最大值只有100,尽管我调整为150,最后能够查到的也只有100条,不过也够了
4. SQL代码我没有全列出来,因为查询语句差不多,上面代码中用省略号表示了,最后的结果是两个csv文件,个人习惯,你也可以把结果存到数据库进行分析
实验步骤
重启数据库,执行文件NormalQuery.sql,执行文件StmtQuery.sql,得到两个结果文件
再重启数据库,执行StmtQuery.sql,执行文件NormalQuery.sql,得到另外两个结果文件
实验结果
详细结果在最后提供了附件下载,有兴趣的朋友可以看下
结果分析
每一个SQL文件中执行了一百个查询语句,没有重复的查询语句,不存在查询cache,统计执行SQL的平均时间得出如下结果
从结果中可以看出,无论是先执行还是后执行,NormalQuery中的语句都比使用预处理语句的要快一些=.=!
那再来看看每一句查询具体的情况,Normal和Stmt的query各执行了两百次,每一步的详细信息如下:
从这里面可以看出,第一个,normalquery比stmtquery少一个步骤,第二个,虽然stmt在不少步骤上是优于normal的,但在executing一步上输掉太多,最后结果上也是落败
最后,再给出一个查询缓存的实验结果,具体步骤就不列了
在查询缓存的时候,Normal完胜……
写在最后
大概情况就是这样,我回忆了一下,网上说预处理可以提高效率的,基本都是用编程的方式去执行查询,不知道这个有没有关系,基础有限,希望园子里的大牛能看到,帮忙解惑
实验结果附件

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In der MySQL -Datenbank wird die Beziehung zwischen dem Benutzer und der Datenbank durch Berechtigungen und Tabellen definiert. Der Benutzer verfügt über einen Benutzernamen und ein Passwort, um auf die Datenbank zuzugreifen. Die Berechtigungen werden über den Zuschussbefehl erteilt, während die Tabelle durch den Befehl create table erstellt wird. Um eine Beziehung zwischen einem Benutzer und einer Datenbank herzustellen, müssen Sie eine Datenbank erstellen, einen Benutzer erstellen und dann Berechtigungen erfüllen.

Vereinfachung der Datenintegration: AmazonRDSMYSQL und Redshifts Null ETL-Integration Die effiziente Datenintegration steht im Mittelpunkt einer datengesteuerten Organisation. Herkömmliche ETL-Prozesse (Extrakt, Konvertierung, Last) sind komplex und zeitaufwändig, insbesondere bei der Integration von Datenbanken (wie AmazonRDSMysQL) in Data Warehouses (wie Rotverschiebung). AWS bietet jedoch keine ETL-Integrationslösungen, die diese Situation vollständig verändert haben und eine vereinfachte Lösung für die Datenmigration von RDSMysQL zu Rotverschiebung bietet. Dieser Artikel wird in die Integration von RDSMYSQL Null ETL mit RedShift eintauchen und erklärt, wie es funktioniert und welche Vorteile es Dateningenieuren und Entwicklern bringt.

MySQL hat eine kostenlose Community -Version und eine kostenpflichtige Enterprise -Version. Die Community -Version kann kostenlos verwendet und geändert werden, die Unterstützung ist jedoch begrenzt und für Anwendungen mit geringen Stabilitätsanforderungen und starken technischen Funktionen geeignet. Die Enterprise Edition bietet umfassende kommerzielle Unterstützung für Anwendungen, die eine stabile, zuverlässige Hochleistungsdatenbank erfordern und bereit sind, Unterstützung zu bezahlen. Zu den Faktoren, die bei der Auswahl einer Version berücksichtigt werden, gehören Kritikalität, Budgetierung und technische Fähigkeiten von Anwendungen. Es gibt keine perfekte Option, nur die am besten geeignete Option, und Sie müssen die spezifische Situation sorgfältig auswählen.

1. Verwenden Sie den richtigen Index, um das Abrufen von Daten zu beschleunigen, indem die Menge der skanierten Datenmenge ausgewählt wird. Wenn Sie mehrmals eine Spalte einer Tabelle nachschlagen, erstellen Sie einen Index für diese Spalte. Wenn Sie oder Ihre App Daten aus mehreren Spalten gemäß den Kriterien benötigen, erstellen Sie einen zusammengesetzten Index 2. Vermeiden Sie aus. Auswählen * Nur die erforderlichen Spalten. Wenn Sie alle unerwünschten Spalten auswählen, konsumiert dies nur mehr Serverspeicher und veranlasst den Server bei hoher Last oder Frequenzzeiten, beispielsweise die Auswahl Ihrer Tabelle, wie beispielsweise die Spalten wie innovata und updated_at und Zeitsteuer und dann zu entfernen.

Ausfüllen des MySQL -Benutzernamens und des Kennworts: 1. Bestimmen Sie den Benutzernamen und das Passwort; 2. Verbinden Sie eine Verbindung zur Datenbank; 3. Verwenden Sie den Benutzernamen und das Passwort, um Abfragen und Befehle auszuführen.

Die MySQL-Datenbankleistung Optimierungshandbuch In ressourcenintensiven Anwendungen spielt die MySQL-Datenbank eine entscheidende Rolle und ist für die Verwaltung massiver Transaktionen verantwortlich. Mit der Erweiterung der Anwendung werden jedoch die Datenbankleistung Engpässe häufig zu einer Einschränkung. In diesem Artikel werden eine Reihe effektiver Strategien zur Leistungsoptimierung von MySQL -Leistung untersucht, um sicherzustellen, dass Ihre Anwendung unter hohen Lasten effizient und reaktionsschnell bleibt. Wir werden tatsächliche Fälle kombinieren, um eingehende Schlüsseltechnologien wie Indexierung, Abfrageoptimierung, Datenbankdesign und Caching zu erklären. 1. Das Design der Datenbankarchitektur und die optimierte Datenbankarchitektur sind der Eckpfeiler der MySQL -Leistungsoptimierung. Hier sind einige Kernprinzipien: Die Auswahl des richtigen Datentyps und die Auswahl des kleinsten Datentyps, der den Anforderungen entspricht, kann nicht nur Speicherplatz speichern, sondern auch die Datenverarbeitungsgeschwindigkeit verbessern.

Kopieren und einfügen in MySQL die folgenden Schritte: Wählen Sie die Daten aus, kopieren Sie mit Strg C (Windows) oder CMD C (MAC). Klicken Sie mit der rechten Maustaste auf den Zielort, wählen Sie ein Einfügen oder verwenden Sie Strg V (Windows) oder CMD V (MAC). Die kopierten Daten werden in den Zielort eingefügt oder ersetzen vorhandene Daten (je nachdem, ob die Daten bereits am Zielort vorhanden sind).

Detaillierte Erläuterung von Datenbanksäureattributen Säureattribute sind eine Reihe von Regeln, um die Zuverlässigkeit und Konsistenz von Datenbanktransaktionen sicherzustellen. Sie definieren, wie Datenbanksysteme Transaktionen umgehen, und sorgen dafür, dass die Datenintegrität und -genauigkeit auch im Falle von Systemabstürzen, Leistungsunterbrechungen oder mehreren Benutzern gleichzeitiger Zugriff. Säureattributübersicht Atomizität: Eine Transaktion wird als unteilbare Einheit angesehen. Jeder Teil schlägt fehl, die gesamte Transaktion wird zurückgerollt und die Datenbank behält keine Änderungen bei. Wenn beispielsweise eine Banküberweisung von einem Konto abgezogen wird, jedoch nicht auf ein anderes erhöht wird, wird der gesamte Betrieb widerrufen. begintransaktion; updateAccountsSetBalance = Balance-100WH
