Heim > Datenbank > MySQL-Tutorial > SQLServer 2000 升级到 SQLServer 2008 性能之需要注意的地方之

SQLServer 2000 升级到 SQLServer 2008 性能之需要注意的地方之

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Freigeben: 2016-06-07 18:05:44
Original
1379 Leute haben es durchsucht

今天在 相同环境测试 2000 和 2008 性能 让我意外的是 2008 明显比2000 慢很多,因为不能简单的升级,sql语句也需要优化

测试sql:
代码如下:
SET STATISTICS IO ON
SET STATISTICS TIME ON
SELECT COUNT(1)
FROM dbo.tbtext a
INNER LOOP JOIN dbo.tbtext b
ON a.id = b.id option (maxdop 1)
SET STATISTICS IO Off
SET STATISTICS TIME Off

表结构:
代码如下:
CREATE TABLE [dbo].[tbtext](
[id] [int] IDENTITY(1,1) NOT NULL,
[VALUE] [int] NULL
) ON [PRIMARY]

单这句测试,看执行计划根本看不出区别。
|--Compute Scalar(DEFINE:([Expr1006]=CONVERT_IMPLICIT(int,[Expr1009],0)))
|--Stream Aggregate(DEFINE:([Expr1009]=Count(*)))
|--Nested Loops(Inner Join, WHERE:([northwind].[dbo].[tbtext].[id] as [b].[id]=[northwind].[dbo].[tbtext].[id] as [a].[id]))
|--Table Scan(OBJECT:([northwind].[dbo].[tbtext] AS [a]))
|--Table Spool
|--Table Scan(OBJECT:([northwind].[dbo].[tbtext] AS [b]))
2008r2:
代码如下:
/*
警告: 由于使用了本地联接提示,联接次序得以强制实施。
表 'tbtext'。扫描计数 1,逻辑读取 46 次
(1 行受影响)
表 'Worktable'。扫描计数 1,逻辑读取 290098 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'tbtext'。扫描计数 2,逻辑读取 262 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
(1 行受影响)
SQL Server 执行时间:
CPU 时间 = 32828 毫秒,占用时间 = 32846 毫秒。
SQL Server 执行时间:
CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
*/

2000sp4:
代码如下:
/*
警告: 由于使用了局部联接提示,所以联接次序得以强制实施。
表 'tbtext'。扫描计数 1,逻辑读 131 次,物理读 0 次,预读 0 次。
SQL Server 执行时间:
CPU 时间 = 0 毫秒,耗费时间 = 0 毫秒。
表 'Worktable'。扫描计数 9999,逻辑读 180001 次,物理读 0 次,预读 0 次。
表 'tbtext'。扫描计数 2,逻辑读 262 次,物理读 0 次,预读 138 次。
SQL Server 执行时间:
CPU 时间 = 17188 毫秒,耗费时间 = 17261 毫秒。
(1 行受影响)
SQL Server 执行时间:
CPU 时间 = 0 毫秒,耗费时间 = 0 毫秒。
*/

比较2000 和 2008的执行就能发现 2008 的cpu 时间明显比 2000 高,2008 的worktable 逻辑读取量,比2000的高,
这个有个worktable 的扫描技术,2000的是9999,2008的是1,这个让人难免有的疑惑是什么情况,都是nest loop,worktable 扫描不应该是1才对。
性能差怎么大会不会是 worktable 搞的鬼呢?
那么就开始调节,过滤id 会有啥发现呢?
代码如下:
SET STATISTICS IO ON
SET STATISTICS TIME ON
SELECT COUNT(1)
FROM dbo.tbtext a
INNER LOOP JOIN dbo.tbtext b
ON a.id = b.id
WHERE a.id SELECT COUNT(1)
FROM dbo.tbtext a
SET STATISTICS IO Off
SET STATISTICS TIME Off

2008r2:
SELECT COUNT(1) FROM dbo.tbtext a INNER LOOP JOIN dbo.tbtext b ON a.id = b.id WHERE a.id |--Compute Scalar(DEFINE:([Expr1006]=CONVERT_IMPLICIT(int,[Expr1009],0)))
|--Stream Aggregate(DEFINE:([Expr1009]=Count(*)))
|--Nested Loops(Inner Join, WHERE:([northwind].[dbo].[tbtext].[id] as [b].[id]=[northwind].[dbo].[tbtext].[id] as [a].[id]))
|--Table Scan(OBJECT:([northwind].[dbo].[tbtext] AS [a]), WHERE:([northwind].[dbo].[tbtext].[id] as [a].[id]|--Table Spool
|--Table Scan(OBJECT:([northwind].[dbo].[tbtext] AS [b]), WHERE:([northwind].[dbo].[tbtext].[id] as [b].[id] 代码如下:
表 'Worktable'。扫描计数 1,逻辑读取 6006 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
表 'tbtext'。扫描计数 2,逻辑读取 262 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。

2000sp4:
|--Compute Scalar(DEFINE:([Expr1002]=Convert([Expr1006])))
|--Stream Aggregate(DEFINE:([Expr1006]=Count(*)))
|--Nested Loops(Inner Join, WHERE:([b].[id]=[a].[id]))
|--Table Scan(OBJECT:([Northwind].[dbo].[tbtext] AS [a]), WHERE:([a].[id]|--Table Spool
|--Table Scan(OBJECT:([Northwind].[dbo].[tbtext] AS [b]))
代码如下:
表 'Worktable'。扫描计数 999,逻辑读 27001 次,物理读 0 次,预读 0 次。
表 'tbtext'。扫描计数 2,逻辑读 262 次,物理读 0 次,预读 0次。

进入 lazy spool的数据完全不一样了,2008 只是进入了1000 条数据,但是2000 全都进去了。
在逻辑读上面 2008 明显低于 2000. cpu时间也明显比2000少。
通过调节id 的值,2000 我推出了一个公式 逻辑读= 10001+(17*n) ,
但是2008的算法十分奇怪,
当n 当 3862000的逻辑读是线性增长,2008 是分段的线性增长,每个分段 f '(x) 都不一样。
2008 的lazy spool适合选择度高的,选择度低的时候完全不行。
从2000到2008 不单单是多了sqlos和表面上的一些功能,很多执行计划的操作符都被重写了,像lazy spool 。
所以在升级到2008 之前,
各位朋友,是否都应该重写一下sql 呢?单单优化 索引 已经解决不了根本问题了。
Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage