Heim > Backend-Entwicklung > Python-Tutorial > Python聚类算法之凝聚层次聚类实例分析

Python聚类算法之凝聚层次聚类实例分析

WBOY
Freigeben: 2016-06-10 15:07:17
Original
3439 Leute haben es durchsucht

本文实例讲述了Python聚类算法之凝聚层次聚类。分享给大家供大家参考,具体如下:

凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并。对于这里的“最接近”,有下面三种定义。我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行:

单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离。
全链(MAX):定义簇的邻近度为不同两个簇的两个最远的点之间的距离。
组平均:定义簇的邻近度为取自两个不同簇的所有点对邻近度的平均值。

# scoding=utf-8
# Agglomerative Hierarchical Clustering(AHC)
import pylab as pl
from operator import itemgetter
from collections import OrderedDict,Counter
points = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")]
# 初始时每个点指派为单独一簇
groups = [idx for idx in range(len(points))]
# 计算每个点对之间的距离
disP2P = {}
for idx1,point1 in enumerate(points):
  for idx2,point2 in enumerate(points):
    if (idx1 < idx2):
      distance = pow(abs(point1[0]-point2[0]),2) + pow(abs(point1[1]-point2[1]),2)
      disP2P[str(idx1)+"#"+str(idx2)] = distance
# 按距离降序将各个点对排序
disP2P = OrderedDict(sorted(disP2P.iteritems(), key=itemgetter(1), reverse=True))
# 当前有的簇个数
groupNum = len(groups)
# 过分合并会带入噪音点的影响,当簇数减为finalGroupNum时,停止合并
finalGroupNum = int(groupNum*0.1)
while groupNum > finalGroupNum:
  # 选取下一个距离最近的点对
  twopoins,distance = disP2P.popitem()
  pointA = int(twopoins.split('#')[0])
  pointB = int(twopoins.split('#')[1])
  pointAGroup = groups[pointA]
  pointBGroup = groups[pointB]
  # 当前距离最近两点若不在同一簇中,将点B所在的簇中的所有点合并到点A所在的簇中,此时当前簇数减1
  if(pointAGroup != pointBGroup):
    for idx in range(len(groups)):
      if groups[idx] == pointBGroup:
        groups[idx] = pointAGroup
    groupNum -= 1
# 选取规模最大的3个簇,其他簇归为噪音点
wantGroupNum = 3
finalGroup = Counter(groups).most_common(wantGroupNum)
finalGroup = [onecount[0] for onecount in finalGroup]
dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup]
# 打印规模最大的3个簇中的点
group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]]
group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]]
group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]]
pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')
pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')
pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')  
# 打印噪音点,黑色
pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok')  
pl.show()

Nach dem Login kopieren

运行效果截图如下:

希望本文所述对大家Python程序设计有所帮助。

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage