Python使用random和tertools模块解一些经典概率问题
random 模块中的常用函数
random()
返回一个位于区间 [0,1] 内的实数;
uniform(a, b)
返回一个位于区间 [a,b] 内的实数;
randint(a, b)
返回一个位于区间 [a,b] 内的整数;
choice(sequence)
返回一个位于 sequence 中的元素,其中,sequence 为一个有序序列,如 list、string 或者 tuple 等类型;
randrange([start], stop[, step])
等效于 choice(range([start], stop[, step]));
shuffle(sequence [, random])
无返回值,用于打乱 sequence 中元素的排列顺序;
sample(sequence, n)
返回一个由 n 个 sequence 中的元素组成的分片,其中,sequence 也可以是 set 类型。
利用 itertools 得到排列、组合
permutations(sequence, k))
从序列 sequence 中得到包含 k 个元素的所有排列。
combinations(sequence, k))
从序列 sequence 中得到包含 k 个元素的所有组合。
羊车门问题
有一个抽奖节目,台上有三扇关闭的门,一扇门后面停着汽车,其余门后都是山羊,只有主持人知道每扇门后面是什么。参赛者可以选择一扇门,在开启它之前,主持人会开启另外一扇门,露出门后的山羊,然后允许参赛者更换自己的选择。问题是:参赛者更换选择后能否增加赢得汽车的机会?
有很多时候,我们并不知道自己的理论分析正确与否,但如果知道概率论中的 大数定律,又碰巧懂一点编程,无疑可以利用计算机重复模拟事件以求解问题。该问题的 Python 3.x 解答程序如下:
from random import *
def once(doors = 3): # 一次事件的模拟
car = randrange(doors) # 一扇门后面停着汽车
man = randrange(doors) # 参赛者预先选择一扇门
return car == man # 参赛者是否最初就选择到车
h = 0 # 坚持选择赢得汽车的次数
c = 0 # 改变选择赢得汽车的次数
times = int(1e6) # 重复实验的次数
for i in range(times):
if once(): h += 1
else: c += 1
print("维持选择:",h/times*100,"%\n改变选择:",c/times*100,"%")
运行结果:
维持选择: 33.268 %
改变选择: 66.732 %
扑克牌问题
概率论给我们带来了很多匪夷所思的反常结果,条件概率尤其如此。譬如:
四个人打扑克,其中一个人说,我手上有一个 A。请问他手上有不止一个 A 的概率是多少?
四个人打扑克,其中一个人说,我手上有一个黑桃 A。请问他手上有不止一个 A 的概率又是多少?
from random import *
cards = [i for i in range(52)]
counter = [0, 0, 0, 0]
def once(): # 0 表示黑桃 A
global cards
ace = set(sample(cards, 13)) & {0,1,2,3}
return len(ace), 0 in ace
for i in range(int(1e6)):
a, s = once() # a 表示 A 的个数, s 表示是否有黑桃 A
if a:
counter[1] += 1
if s: counter[3] += 1
if a > 1:
counter[0] += 1
if s: counter[2] += 1
print('情况一:', counter[0]/counter[1], '\n情况二:', counter[2]/counter[3])
运行结果:
情况一: 0.3694922900321386
情况二: 0.5613778028656186
有趣的事情出来了:如果这个人宣布了手中 A 的花色,他手中持有多个 A 的概率竟然会大大增加。可这又该如何理解呢?
一个家庭中有两个小孩,已知其中一个是女孩,求另一个小孩也是女孩的概率
网络上每一次有人发帖提出与条件概率有关的悖论时,总会引来无数人的围观和争论,哪怕这些问题的实质都是相同的。本题目无疑是争论的最多的问题之一。
说起来网上的分析都像模像样,一些原本都迷糊的人被人讲的晕头转向,一会觉得这个对,一会又觉得那个对。现在我不给你分析那些道理,就用计算机来模拟问题,让你直接得到结论,而毋须明白个中缘由。
from random import * # 0 表示女孩,1 表示男孩
family = (lambda n :[{randrange(2),randrange(2)} for i in range(n)])(int(1e6))
both = family.count({0}) # 都是女孩的家庭数
exist = len(family) - family.count({1}) # 有女孩的家庭数
print(both/exist)
运行结果:
0.33332221770186543
没有那些深奥的分析过程,寥寥数行代码就得到了问题的答案,想必这也是计算机引入数学计算与证明的好处。
生日悖论
每个人都有生日,偶尔会遇到与自己同一天过生日的人,但在生活中这种缘分似乎并不常有。我们猜猜看:在 50 个人当中出现这种缘分的概率有多大,是 10%、20% 还是 50%?
from random import *
counter, times = 0, int(1e6)
for i in range(times):
if len({randrange(365) for i in range(50)}) != 50: # 存在同一天生日的人
counter += 1
print('在 50 个人中有相同生日的概率为:',counter/times)
运行结果:
在 50 个人中有相同生日的概率为: 0.970109
在 50 个人中有相同生日的概率高达 97%,这个数字恐怕高出了绝大多数人的意料。我们没有算错,是我们的直觉错了,科学与生活又开了个玩笑。正因为计算结果与日常经验产生了如此明显的矛盾,该问题被称为「生日悖论」,它体现的是理性计算与感性认识的矛盾,并不引起逻辑矛盾,所以倒也算不上严格意义上的悖论。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Effizientes Training von Pytorch -Modellen auf CentOS -Systemen erfordert Schritte, und dieser Artikel bietet detaillierte Anleitungen. 1.. Es wird empfohlen, YUM oder DNF zu verwenden, um Python 3 und Upgrade PIP zu installieren: Sudoyumupdatepython3 (oder sudodnfupdatepython3), PIP3Install-upgradepip. CUDA und CUDNN (GPU -Beschleunigung): Wenn Sie Nvidiagpu verwenden, müssen Sie Cudatool installieren

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Bei der Auswahl einer Pytorch -Version unter CentOS müssen die folgenden Schlüsselfaktoren berücksichtigt werden: 1. Cuda -Version Kompatibilität GPU -Unterstützung: Wenn Sie NVIDIA -GPU haben und die GPU -Beschleunigung verwenden möchten, müssen Sie Pytorch auswählen, der die entsprechende CUDA -Version unterstützt. Sie können die CUDA-Version anzeigen, die unterstützt wird, indem Sie den Befehl nvidia-smi ausführen. CPU -Version: Wenn Sie keine GPU haben oder keine GPU verwenden möchten, können Sie eine CPU -Version von Pytorch auswählen. 2. Python Version Pytorch

Effizient verarbeiten Pytorch-Daten zum CentOS-System, die folgenden Schritte sind erforderlich: Abhängigkeit Installation: Aktualisieren Sie zuerst das System und installieren Sie Python3 und PIP: Sudoyumupdate-Judoyuminstallpython3-Tysudoyuminstallpython3-Pip-y, Download und installieren Sie Cudatoolkit und Cudnn-Model von der NVIDIA-offiziellen Website. Konfiguration der virtuellen Umgebung (empfohlen): Verwenden Sie Conda, um eine neue virtuelle Umgebung zu erstellen und zu aktivieren, zum Beispiel: condacreate-n

Die Installation von CentOS-Installationen erfordert die folgenden Schritte: Installieren von Abhängigkeiten wie Entwicklungstools, PCRE-Devel und OpenSSL-Devel. Laden Sie das Nginx -Quellcode -Paket herunter, entpacken Sie es, kompilieren Sie es und installieren Sie es und geben Sie den Installationspfad als/usr/local/nginx an. Erstellen Sie NGINX -Benutzer und Benutzergruppen und setzen Sie Berechtigungen. Ändern Sie die Konfigurationsdatei nginx.conf und konfigurieren Sie den Hörport und den Domänennamen/die IP -Adresse. Starten Sie den Nginx -Dienst. Häufige Fehler müssen beachtet werden, z. B. Abhängigkeitsprobleme, Portkonflikte und Konfigurationsdateifehler. Die Leistungsoptimierung muss entsprechend der spezifischen Situation angepasst werden, z. B. das Einschalten des Cache und die Anpassung der Anzahl der Arbeitsprozesse.
