Python多进程通信Queue、Pipe、Value、Array实例

WBOY
Freigeben: 2016-06-10 15:18:56
Original
1601 Leute haben es durchsucht

queue和pipe的区别: pipe用来在两个进程间通信。queue用来在多个进程间实现通信。 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法。

1)Queue & JoinableQueue

queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue。

multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法。

task_done()用来告诉queue一个task完成。一般地在调用get()获得一个task,在task结束后调用task_done()来通知Queue当前task完成。

join() 阻塞直到queue中的所有的task都被处理(即task_done方法被调用)。

代码:

复制代码 代码如下:

import multiprocessing
import time

class Consumer(multiprocessing.Process):
   
    def __init__(self, task_queue, result_queue):
        multiprocessing.Process.__init__(self)
        self.task_queue = task_queue
        self.result_queue = result_queue

    def run(self):
        proc_name = self.name
        while True:
            next_task = self.task_queue.get()
            if next_task is None:
                # Poison pill means shutdown
                print ('%s: Exiting' % proc_name)
                self.task_queue.task_done()
                break
            print ('%s: %s' % (proc_name, next_task))
            answer = next_task() # __call__()
            self.task_queue.task_done()
            self.result_queue.put(answer)
        return


class Task(object):
    def __init__(self, a, b):
        self.a = a
        self.b = b
    def __call__(self):
        time.sleep(0.1) # pretend to take some time to do the work
        return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
    def __str__(self):
        return '%s * %s' % (self.a, self.b)


if __name__ == '__main__':
    # Establish communication queues
    tasks = multiprocessing.JoinableQueue()
    results = multiprocessing.Queue()
   
    # Start consumers
    num_consumers = multiprocessing.cpu_count()
    print ('Creating %d consumers' % num_consumers)
    consumers = [ Consumer(tasks, results)
                  for i in range(num_consumers) ]
    for w in consumers:
        w.start()
   
    # Enqueue jobs
    num_jobs = 10
    for i in range(num_jobs):
        tasks.put(Task(i, i))
   
    # Add a poison pill for each consumer
    for i in range(num_consumers):
        tasks.put(None)

    # Wait for all of the tasks to finish
    tasks.join()
   
    # Start printing results
    while num_jobs:
        result = results.get()
        print ('Result:', result)
        num_jobs -= 1

注意小技巧: 使用None来表示task处理完毕。

运行结果:

2)pipe

pipe()返回一对连接对象,代表了pipe的两端。每个对象都有send()和recv()方法。

代码:

复制代码 代码如下:

from multiprocessing import Process, Pipe

def f(conn):
    conn.send([42, None, 'hello'])
    conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    p.join()
    print(parent_conn.recv())   # prints "[42, None, 'hello']"

3)Value + Array

Value + Array 是python中共享内存 映射文件的方法,速度比较快。

复制代码 代码如下:

from multiprocessing import Process, Value, Array

def f(n, a):
    n.value = n.value + 1
    for i in range(len(a)):
        a[i] = a[i] * 10

if __name__ == '__main__':
    num = Value('i', 1)
    arr = Array('i', range(10))

    p = Process(target=f, args=(num, arr))
    p.start()
    p.join()

    print(num.value)
    print(arr[:])
   
    p2 = Process(target=f, args=(num, arr))
    p2.start()
    p2.join()

    print(num.value)
    print(arr[:])

# the output is :
# 2
# [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
# 3
# [0, 100, 200, 300, 400, 500, 600, 700, 800, 900]

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage