Heim Backend-Entwicklung C++ Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?

Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?

Jun 01, 2024 pm 10:34 PM
大数据处理 流处理

Stream-Verarbeitungstechnologie wird für die Verarbeitung großer Datenmengen verwendet. Stream-Verarbeitung ist eine Technologie, die Datenströme in Echtzeit verarbeitet. In C++ kann Apache Kafka für die Stream-Verarbeitung verwendet werden. Die Stream-Verarbeitung bietet Echtzeit-Datenverarbeitung, Skalierbarkeit und Fehlertoleranz. In diesem Beispiel wird Apache Kafka verwendet, um Daten aus einem Kafka-Thema zu lesen und den Durchschnitt zu berechnen.

Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?

Big-Data-Verarbeitung in C++-Technologie: Verwendung der Stream-Verarbeitungstechnologie zur Verarbeitung von Big-Data-Streams

Stream-Verarbeitung ist eine Technologie, die unbegrenzte Datenströme verarbeitet und es Entwicklern ermöglicht, Daten sofort bei ihrer Generierung zu verarbeiten und zu analysieren. In C++ können wir Stream-Processing-Frameworks wie Apache Kafka verwenden, um diese Funktionalität zu erreichen.

Vorteile des Stream Processing Framework

  • Datenverarbeitung in Echtzeit: Verarbeiten Sie Daten sofort ohne Speicherung und Stapelverarbeitung.
  • Skalierbarkeit: Einfache Skalierung für die Verarbeitung großer Datenströme.
  • Fehlertoleranz: Stellen Sie sicher, dass Daten nicht verloren gehen.

Praktischer Fall: Stream-Verarbeitung mit Apache Kafka

Lassen Sie uns Apache Kafka verwenden, um eine C++-Stream-Verarbeitungsanwendung zu erstellen, die Daten aus einem Kafka-Thema liest und den Durchschnittswert im Datenstrom berechnet.

// 头文件
#include <kafka/apache_kafka.h>
#include <thread>
#include <atomic>

// 定义原子平均值计数器
std::atomic<double> avg_count(0.0);

// 流处理消费者线程
void consume_thread(const std::string& topic, rd_kafka_t* rk) {
  // 创建消费者组
  rd_kafka_consumer_group_t* consumer_group =
      rd_kafka_consumer_group_join(rk, topic.c_str(),
                                  rd_kafka_topic_partition_list_new(1), NULL);

  while (true) {
    // 订阅主题
    rd_kafka_message_t* message;
    rd_kafka_resp_err_t consumer_err =
        rd_kafka_consumer_group_poll(consumer_group, 10000, &message);
    if (consumer_err == RD_KAFKA_RESP_ERR__PARTITION_EOF) {
      rd_kafka_consumer_group_unjoin(consumer_group);
      rd_kafka_consumer_group_destroy(consumer_group);
      return;
    } else if (consumer_err != RD_KAFKA_RESP_ERR_NO_ERROR) {
      std::cerr << "Consumer error: " << rd_kafka_err2str(consumer_err) << "\n";
      continue;
    }

    // 提取并处理数据
    if (message) {
      // 提取值
      const char* message_str = static_cast<const char*>(message->payload);
      int value = std::atoi(message_str);

      // 更新原子平均值计数器
      avg_count += (static_cast<double>(value) - avg_count) /
                     (avg_count.fetch_add(1) + 1);

      if (avg_count >= 1e6) {
        std::cout << "Average: " << avg_count << "\n";
      }
    }

    // 提交偏移量
    rd_kafka_message_destroy(message);
  }
}

int main() {
  // 初始化 Kafka 实例
  rd_kafka_t* rk = rd_kafka_new(RD_KAFKA_CONSUMER, NULL, NULL, NULL);
  if (!rk) {
    std::cerr << "Failed to initialize Kafka instance\n";
    return 1;
  }

  // 配置 Kafka 实例
  char error_str[512];
  if (rd_kafka_conf_set(rk, "bootstrap.servers", "localhost:9092",
                          error_str, sizeof(error_str)) != RD_KAFKA_CONF_OK) {
    std::cerr << "Failed to set Kafka configuration: " << error_str << "\n";
    rd_kafka_destroy(rk);
    return 1;
  }

  // 创建流处理消费者线程
  std::thread consumer_thr(consume_thread, "test-topic", rk);

  // 等待消费者线程
  consumer_thr.join();

  // 销毁 Kafka 实例
  rd_kafka_destroy(rk);

  return 0;
}
Nach dem Login kopieren

Durch das Ausführen dieses Codes wird eine Stream-Verarbeitungsanwendung erstellt, die Daten aus dem Kafka-Thema „test-topic“ liest und einen Durchschnitt pro Sekunde berechnet.

Das obige ist der detaillierte Inhalt vonBig-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So implementieren Sie statistische Diagramme großer Datenmengen im Vue-Framework So implementieren Sie statistische Diagramme großer Datenmengen im Vue-Framework Aug 25, 2023 pm 04:20 PM

So implementieren Sie statistische Diagramme großer Datenmengen im Vue-Framework. Einführung: In den letzten Jahren haben Datenanalyse und -visualisierung in allen Lebensbereichen eine immer wichtigere Rolle gespielt. In der Frontend-Entwicklung sind Diagramme eine der gebräuchlichsten und intuitivsten Möglichkeiten, Daten anzuzeigen. Das Vue-Framework ist ein fortschrittliches JavaScript-Framework zum Erstellen von Benutzeroberflächen. Es bietet viele leistungsstarke Tools und Bibliotheken, mit denen wir schnell Diagramme erstellen und umfangreiche Daten anzeigen können. In diesem Artikel wird erläutert, wie statistische Diagramme mit umfangreichen Daten im Vue-Framework implementiert und angehängt werden

So verwenden Sie den PHP-Crawler zum Crawlen großer Datenmengen So verwenden Sie den PHP-Crawler zum Crawlen großer Datenmengen Jun 14, 2023 pm 12:52 PM

Mit dem Beginn des Datenzeitalters und der Diversifizierung von Datenvolumen und Datentypen müssen immer mehr Unternehmen und Einzelpersonen riesige Datenmengen beschaffen und verarbeiten. Zu diesem Zeitpunkt wird die Crawler-Technologie zu einer sehr effektiven Methode. In diesem Artikel wird erläutert, wie Sie mit dem PHP-Crawler große Datenmengen crawlen. 1. Einführung in Crawler Crawler sind eine Technologie, die automatisch Internetinformationen abruft. Das Prinzip besteht darin, Website-Inhalte im Internet durch das Schreiben von Programmen automatisch abzurufen und zu analysieren und die erforderlichen Daten zur Verarbeitung oder Speicherung zu erfassen. In der Entwicklung von Crawler-Programmen werden viele ausgereift

So verwenden Sie Spring Boot zum Erstellen von Big-Data-Verarbeitungsanwendungen So verwenden Sie Spring Boot zum Erstellen von Big-Data-Verarbeitungsanwendungen Jun 23, 2023 am 09:07 AM

Mit dem Aufkommen des Big-Data-Zeitalters beginnen immer mehr Unternehmen, den Wert von Big Data zu verstehen, zu erkennen und ihn auf das Geschäft anzuwenden. Das damit verbundene Problem besteht darin, mit diesem großen Datenfluss umzugehen. In diesem Fall sind Big-Data-Verarbeitungsanwendungen zu etwas geworden, das jedes Unternehmen in Betracht ziehen muss. Für Entwickler ist auch die Verwendung von SpringBoot zum Erstellen einer effizienten Big-Data-Verarbeitungsanwendung ein sehr wichtiges Thema. SpringBoot ist ein sehr beliebtes Java-Framework, das dies ermöglicht

Big-Data-Verarbeitung in C++-Technologie: Wie nutzt man Graphdatenbanken zum Speichern und Abfragen großer Graphdaten? Big-Data-Verarbeitung in C++-Technologie: Wie nutzt man Graphdatenbanken zum Speichern und Abfragen großer Graphdaten? Jun 03, 2024 pm 12:47 PM

Die C++-Technologie kann umfangreiche Diagrammdaten verarbeiten, indem sie Diagrammdatenbanken nutzt. Zu den spezifischen Schritten gehören: Erstellen einer TinkerGraph-Instanz, Hinzufügen von Scheitelpunkten und Kanten, Formulieren einer Abfrage, Abrufen des Ergebniswerts und Konvertieren des Ergebnisses in eine Liste.

Hohe Parallelität und Big-Data-Verarbeitungstechnologie in der Go-Sprache Hohe Parallelität und Big-Data-Verarbeitungstechnologie in der Go-Sprache Jun 04, 2023 pm 11:31 PM

Mit der rasanten Entwicklung der Internettechnologie müssen immer mehr Anwendungen große Datenmengen und gleichzeitige Zugriffsanfragen verarbeiten. Um diese Herausforderungen zu meistern, hat sich die Go-Sprache entsprechend den Anforderungen der Zeit entwickelt und ist zu einer Sprache geworden, die sich hervorragend für hohe Parallelität und die Verarbeitung großer Datenmengen eignet. In diesem Artikel werden Technologien für hohe Parallelität und Big-Data-Verarbeitung in der Go-Sprache vorgestellt. 1. Verarbeitungstechnologie mit hoher Parallelität Goroutine ist eine einzigartige, leichtgewichtige Thread-Implementierung in der Go-Sprache, die nur sehr wenig Speicherplatz und Systemressourcen beansprucht. Mithilfe von Coroutinen können problemlos Zehntausende gleichzeitig ausgeführter Aufgaben implementiert werden

Kenntnisse in der Big-Data-Verarbeitung in C++ Kenntnisse in der Big-Data-Verarbeitung in C++ Aug 22, 2023 pm 01:28 PM

C++ ist eine effiziente Programmiersprache, die mit verschiedenen Datentypen umgehen kann. Es eignet sich für die Verarbeitung großer Datenmengen. Wenn jedoch nicht die richtigen Techniken für die Verarbeitung großer Datenmengen verwendet werden, kann das Programm sehr langsam und instabil werden. In diesem Artikel stellen wir einige Tipps für die Arbeit mit Big Data in C++ vor. 1. Verwenden Sie die dynamische Speicherzuweisung. In C++ kann die Speicherzuweisung von Variablen statisch oder dynamisch sein. Die statische Speicherzuweisung weist Speicherplatz zu, bevor das Programm ausgeführt wird, während die dynamische Speicherzuweisung den Speicherplatz nach Bedarf zuweist, während das Programm ausgeführt wird. Beim Umgang mit großen

Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten? Big-Data-Verarbeitung in der C++-Technologie: Wie nutzt man die Stream-Processing-Technologie, um Big-Data-Streams zu verarbeiten? Jun 01, 2024 pm 10:34 PM

Die Stream-Verarbeitungstechnologie wird für die Verarbeitung großer Datenmengen verwendet. Stream-Verarbeitung ist eine Technologie, die Datenströme in Echtzeit verarbeitet. In C++ kann Apache Kafka für die Stream-Verarbeitung verwendet werden. Die Stream-Verarbeitung bietet Echtzeit-Datenverarbeitung, Skalierbarkeit und Fehlertoleranz. In diesem Beispiel wird ApacheKafka verwendet, um Daten aus einem Kafka-Thema zu lesen und den Durchschnitt zu berechnen.

Wie man PHP und Hadoop für die Big-Data-Verarbeitung verwendet Wie man PHP und Hadoop für die Big-Data-Verarbeitung verwendet Jun 19, 2023 pm 02:24 PM

Da die Datenmenge weiter zunimmt, sind herkömmliche Datenverarbeitungsmethoden den Herausforderungen des Big-Data-Zeitalters nicht mehr gewachsen. Hadoop ist ein Open-Source-Framework für verteiltes Computing, das das Leistungsengpassproblem löst, das durch Einzelknotenserver bei der Verarbeitung großer Datenmengen verursacht wird, indem große Datenmengen verteilt gespeichert und verarbeitet werden. PHP ist eine Skriptsprache, die in der Webentwicklung weit verbreitet ist und die Vorteile einer schnellen Entwicklung und einfachen Wartung bietet. In diesem Artikel wird die Verwendung von PHP und Hadoop für die Verarbeitung großer Datenmengen vorgestellt. Was ist HadoopHadoop ist

See all articles