Gängige Entwurfsmuster in der gleichzeitigen C++-Programmierung
Bei der gleichzeitigen C++-Programmierung kann die Übernahme von Entwurfsmustern die Lesbarkeit, Wartbarkeit und Skalierbarkeit des Codes verbessern. Zu den gängigen Mustern gehören: Producer-Consumer-Muster: Ein Thread generiert Daten und andere Threads verbrauchen Daten. Leser-Schreiber-Modus: Mehrere Leser können gleichzeitig auf freigegebene Ressourcen zugreifen, aber nur ein Autor kann darauf zugreifen. Überwachungsmodus: Schützt den gleichzeitigen Zugriff auf gemeinsam genutzte Ressourcen, erzwingt Synchronisierung und Statusprüfungen. Thread-Pool-Modus: Erstellen Sie Thread-Gruppen im Voraus, um den Aufwand durch häufiges Erstellen und Zerstören von Threads zu vermeiden.
Gemeinsame Entwurfsmuster in der gleichzeitigen C++-Programmierung
Bei der gleichzeitigen Programmierung kann die Verwendung von Entwurfsmustern die Lesbarkeit, Wartbarkeit und Skalierbarkeit des Codes erheblich verbessern. Nachfolgend sind einige gängige Muster in der gleichzeitigen C++-Programmierung aufgeführt:
Produzenten-Konsumenten-Muster
In diesem Muster generiert ein Produzenten-Thread Daten und ein oder mehrere Konsumenten-Threads verbrauchen die Daten. Gängige Implementierungsmethoden sind die Verwendung von Warteschlangen oder Shared Memory.
Beispiel:
class Producer { public: void produce(const T& data) { std::lock_guard<std::mutex> lock(queue_mutex); queue.push(data); } private: std::queue<T> queue; std::mutex queue_mutex; }; class Consumer { public: void consume() { std::unique_lock<std::mutex> lock(queue_mutex); if (queue.empty()) { condition_variable.wait(lock); } const T& data = queue.front(); queue.pop(); lock.unlock(); // ... } private: std::shared_ptr<Producer> producer; std::condition_variable condition_variable; std::mutex queue_mutex; };
Reader-Writer-Modus
In diesem Modus können mehrere Leser gleichzeitig auf gemeinsame Ressourcen zugreifen, aber nur ein Autor kann darauf zugreifen. Wiedereintrittssperren oder Lese-/Schreibsperren werden häufig zur Implementierung dieses Musters verwendet.
Beispiel:
class ReadWriteLock { public: void read_lock() { while (write_locked) { unique_lock<std::mutex> lock(read_mutex); read_count++; } } void read_unlock() { std::lock_guard<std::mutex> lock(read_mutex); read_count--; } void write_lock() { std::lock_guard<std::mutex> lock(write_mutex); while (read_count > 0) { /* 等待读完成 */} write_locked = true; } void write_unlock() { std::lock_guard<std::mutex> lock(write_mutex); write_locked = false; } private: bool write_locked = false; int read_count = 0; std::mutex read_mutex; std::mutex write_mutex; };
Monitormuster
Das Monitormuster schützt den gleichzeitigen Zugriff auf gemeinsam genutzte Ressourcen, indem es den Datenzugriff auf ein einzelnes Objekt beschränkt. Überwachungsobjekte kapseln Daten und Vorgänge und erzwingen die Synchronisierung und Statusprüfung.
Beispiel:
class Account { public: void deposit(int amount) { std::lock_guard<std::mutex> lock(balance_mutex); balance += amount; } int withdraw(int amount) { std::lock_guard<std::mutex> lock(balance_mutex); if (amount <= balance) { balance -= amount; return amount; } return 0; } int get_balance() { std::lock_guard<std::mutex> lock(balance_mutex); return balance; } private: int balance = 0; std::mutex balance_mutex; };
Thread-Pool-Modus
Der Thread-Pool-Modus bietet eine vorab erstellte Thread-Gruppe, die von Client-Threads verwendet werden kann. Durch die Verwendung eines Thread-Pools können Sie den Aufwand vermeiden, der durch das häufige Erstellen und Zerstören von Threads entsteht.
Beispiel:
class ThreadPool { public: ThreadPool(int num_threads) { for (int i = 0; i < num_threads; i++) { threads.emplace_back(std::thread([this] { while (true) { std::function<void()> task; { std::unique_lock<std::mutex> lock(tasks_mutex); if (tasks.empty()) { condition_variable.wait(lock); } task = std::move(tasks.front()); tasks.pop(); } task(); } })); } } void submit(std::function<void()> task) { std::lock_guard<std::mutex> lock(tasks_mutex); tasks.push(std::move(task)); condition_variable.notify_one(); } private: std::vector<std::jthread> threads; std::queue<std::function<void()>> tasks; std::mutex tasks_mutex; std::condition_variable condition_variable; };
Das obige ist der detaillierte Inhalt vonGängige Entwurfsmuster in der gleichzeitigen C++-Programmierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



In C wird der Zeichenentyp in Saiten verwendet: 1. Speichern Sie ein einzelnes Zeichen; 2. Verwenden Sie ein Array, um eine Zeichenfolge darzustellen und mit einem Null -Terminator zu enden. 3. Durch eine Saitenbetriebsfunktion arbeiten; 4. Lesen oder geben Sie eine Zeichenfolge von der Tastatur aus.

Ursachen und Lösungen für Fehler Bei der Verwendung von PECL zur Installation von Erweiterungen in der Docker -Umgebung, wenn die Docker -Umgebung verwendet wird, begegnen wir häufig auf einige Kopfschmerzen ...

Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

Multithreading in der Sprache kann die Programmeffizienz erheblich verbessern. Es gibt vier Hauptmethoden, um Multithreading in C -Sprache zu implementieren: Erstellen Sie unabhängige Prozesse: Erstellen Sie mehrere unabhängig laufende Prozesse. Jeder Prozess hat seinen eigenen Speicherplatz. Pseudo-MultitHhreading: Erstellen Sie mehrere Ausführungsströme in einem Prozess, der denselben Speicherplatz freigibt und abwechselnd ausführt. Multi-Thread-Bibliothek: Verwenden Sie Multi-Thread-Bibliotheken wie PThreads, um Threads zu erstellen und zu verwalten, wodurch reichhaltige Funktionen der Thread-Betriebsfunktionen bereitgestellt werden. Coroutine: Eine leichte Multi-Thread-Implementierung, die Aufgaben in kleine Unteraufgaben unterteilt und sie wiederum ausführt.

STD :: Einzigartige Entfernung benachbarte doppelte Elemente im Container und bewegt sie bis zum Ende, wodurch ein Iterator auf das erste doppelte Element zeigt. STD :: Distanz berechnet den Abstand zwischen zwei Iteratoren, dh die Anzahl der Elemente, auf die sie hinweisen. Diese beiden Funktionen sind nützlich, um den Code zu optimieren und die Effizienz zu verbessern, aber es gibt auch einige Fallstricke, auf die geachtet werden muss, wie z. STD :: Distanz ist im Umgang mit nicht randomischen Zugriffs-Iteratoren weniger effizient. Indem Sie diese Funktionen und Best Practices beherrschen, können Sie die Leistung dieser beiden Funktionen voll ausnutzen.

In der C -Sprache ist die Snake -Nomenklatur eine Konvention zum Codierungsstil, bei der Unterstriche zum Verbinden mehrerer Wörter mit Variablennamen oder Funktionsnamen angeschlossen werden, um die Lesbarkeit zu verbessern. Obwohl es die Zusammenstellung und den Betrieb nicht beeinträchtigen wird, müssen langwierige Benennung, IDE -Unterstützung und historisches Gepäck berücksichtigt werden.

Die Funktion Release_Semaphor in C wird verwendet, um das erhaltene Semaphor zu freigeben, damit andere Threads oder Prozesse auf gemeinsame Ressourcen zugreifen können. Es erhöht die Semaphorzahl um 1 und ermöglicht es dem Blockierfaden, die Ausführung fortzusetzen.

Untersuchung undefinierter Verhaltensweisen in der C-Programmierung: In einem detaillierten Leitfaden in diesem Artikel wird ein E-Book über undefinierte Verhaltensweisen in der C-Programmierung vorgestellt. Insgesamt 12 Kapitel, die einige der schwierigsten und weniger bekannten Aspekte der C-Programmierung abdecken. Dieses Buch ist kein einführendes Lehrbuch für C-Sprache, sondern richtet sich an Leser, die mit der C-Sprachprogrammierung vertraut sind, und untersucht ausführliche unterschiedliche Situationen und potenzielle Folgen undefinter Verhaltensweisen. Autor Dmitrysviridkin, Herausgeber Andrey Karpov. Nach sechs Monaten sorgfältiger Vorbereitung traf sich dieses E-Book schließlich mit den Lesern. Gedruckte Versionen werden auch in Zukunft gestartet. Dieses Buch sollte ursprünglich 11 Kapitel enthalten, aber während des Erstellungsprozesses wurde der Inhalt kontinuierlich angereichert und schließlich auf 12 Kapitel erweitert-dies ist ein klassisches Array-Array-Fall, und es kann als jeder C-Programmierer bezeichnet werden
