


Praktische Beispiele des Golang-Frameworks im Bereich der künstlichen Intelligenz
Das Go-Framework ist im Bereich der künstlichen Intelligenz weit verbreitet und kann zum Bereitstellen von Modellen für maschinelles Lernen (wie TensorFlow Lite), zum Verwalten von Lebenszyklen für maschinelles Lernen (wie MLflow) und für Inferenzregel-Engines (wie Cel-Go) verwendet werden ).
Praktische Fälle des Go-Frameworks im Bereich der künstlichen Intelligenz
Go ist als moderne Programmiersprache für seine Effizienz, Parallelität und plattformübergreifende Natur bekannt und verfügt über ein breites Anwendungsspektrum im Bereich der künstlichen Intelligenz Künstliche Intelligenz (KI). Im Folgenden sind einige praktische Fälle des Go-Frameworks in der KI aufgeführt:
1. TensorFlow Lite: Bereitstellung von Modellen für maschinelles Lernen
TensorFlow Lite ist ein leichtes Framework für maschinelles Lernen, das Modelle auf mobilen und eingebetteten Geräten bereitstellen kann. Mit TensorFlow Lite integrierte Go-Frameworks wie [EdgeX Foundry](https://www.edgexfoundry.org/) ermöglichen die Bereitstellung und Ausführung von KI-Anwendungen auf Edge-Geräten.
import ( "fmt" "github.com/edgexfoundry/edgex-go/internal" ) func main() { edgex := internal.NewEdgeX() edgex.Bootstrap() defer edgex.Close() fmt.Println("EdgeX Foundry service running") }
2. MLflow: Verwalten des Lebenszyklus des maschinellen Lernens
MLflow ist eine Open-Source-Plattform zur Verwaltung des Lebenszyklus des maschinellen Lernens. Go-Frameworks wie [Kubeflow](https://github.com/kubeflow/kubeflow) integrieren MLflow in das Kubernetes-Ökosystem und vereinfachen so die Bereitstellung und Lebenszyklusverwaltung von KI-Modellen.
import ( "context" "github.com/kubeflow/pipelines/backend/src/agent/client" ) func main() { client, err := client.NewPipelineServiceClient("pipeline-service") if err != nil { fmt.Errorf("Failed to create Pipeline Service client: %v", err) } jobID, err := client.CreateJobRequest(context.Background(), &pipelinepb.CreateJobRequest{}) if err != nil { fmt.Errorf("Failed to create job: %v", err) } fmt.Printf("Job '%v' created\n", jobID) }
3. Cel-Go: Inferenzregel-Engine
Cel-Go ist eine von Google entwickelte Inferenzregel-Engine, die zur Argumentation und Entscheidungsfindung in KI-Anwendungen verwendet wird. Beispielsweise verwendet [CloudEvents](https://github.com/cloudevents/sdk-go) Cel-Go, um Ereignisse zu verarbeiten und Aktionen basierend auf vordefinierten Regeln auszuführen.
import ( "context" "log" cloudevents "github.com/cloudevents/sdk-go/v2" ) func main() { log.Printf("Starting event processor") c, err := cloudevents.NewClientHTTP() if err != nil { log.Fatalf("failed to create client, %v", err) } defer c.Close() h := cloudevents.NewHTTP() h.Handler = myHandler log.Printf("Listening on port %d", 8080) if err := h.Start(8080); err != nil { log.Fatalf("failed to start HTTP handler, %v", err) } }
Fazit:
Das Go-Framework verfügt über ein breites Anwendungsspektrum im KI-Bereich und bietet effiziente und flexible Lösungen. Von der Modellbereitstellung über das Lebenszyklusmanagement bis hin zur Regelinferenz vereinfachen diese Frameworks die Entwicklung und Implementierung von KI-Anwendungen.
Das obige ist der detaillierte Inhalt vonPraktische Beispiele des Golang-Frameworks im Bereich der künstlichen Intelligenz. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag veröffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), hauptsächlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht

Laut Nachrichten dieser Website vom 5. Juli veröffentlichte GlobalFoundries am 1. Juli dieses Jahres eine Pressemitteilung, in der die Übernahme der Power-Galliumnitrid (GaN)-Technologie und des Portfolios an geistigem Eigentum von Tagore Technology angekündigt wurde, in der Hoffnung, seinen Marktanteil in den Bereichen Automobile und Internet auszubauen Anwendungsbereiche für Rechenzentren mit künstlicher Intelligenz, um höhere Effizienz und bessere Leistung zu erforschen. Da sich Technologien wie generative künstliche Intelligenz (GenerativeAI) in der digitalen Welt weiterentwickeln, ist Galliumnitrid (GaN) zu einer Schlüssellösung für nachhaltiges und effizientes Energiemanagement, insbesondere in Rechenzentren, geworden. Auf dieser Website wurde die offizielle Ankündigung zitiert, dass sich das Ingenieurteam von Tagore Technology im Rahmen dieser Übernahme mit GF zusammenschließen wird, um die Galliumnitrid-Technologie weiterzuentwickeln. G

Konzentration ist zu jeder Zeit eine Tugend. Autor |. Herausgeber Tang Yitao |. Jing Yu Das Wiederaufleben der künstlichen Intelligenz hat zu einer neuen Welle von Hardware-Innovationen geführt. Der beliebteste AIPin hat beispiellose negative Bewertungen erhalten. Marques Brownlee (MKBHD) bezeichnete es als das schlechteste Produkt, das er jemals rezensiert habe; David Pierce, Herausgeber von The Verge, sagte, er würde niemandem empfehlen, dieses Gerät zu kaufen. Sein Konkurrent, der RabbitR1, ist nicht viel besser. Der größte Zweifel an diesem KI-Gerät besteht darin, dass es sich offensichtlich nur um eine App handelt, Rabbit jedoch eine 200-Dollar-Hardware gebaut hat. Viele Menschen sehen KI-Hardware-Innovationen als Chance, das Smartphone-Zeitalter zu untergraben und sich ihm zu widmen.

Herausgeber | ScienceAI Vor einem Jahr verließ Llion Jones, der letzte Autor des Transformer-Artikels von Google, das Unternehmen, um ein Unternehmen zu gründen, und gründete zusammen mit dem ehemaligen Google-Forscher David Ha das Unternehmen für künstliche Intelligenz SakanaAI. SakanaAI behauptet, ein neues Basismodell zu schaffen, das auf von der Natur inspirierten Intelligenz basiert! Jetzt hat SakanaAI seinen Antwortbogen eingereicht. SakanaAI kündigt die Einführung von AIScientist an, dem weltweit ersten KI-System für automatisierte wissenschaftliche Forschung und offene Entdeckung! Von der Konzeption, dem Schreiben von Code, der Durchführung von Experimenten und der Zusammenfassung der Ergebnisse bis hin zum Verfassen ganzer Arbeiten und der Durchführung von Peer-Reviews ermöglicht AIScientist KI-gesteuerte wissenschaftliche Forschung und Beschleunigung

Herausgeber |. ScienceAI Kürzlich hat Tom M. Mitchell, Professor an der Carnegie Mellon University und bekannt als „Vater des maschinellen Lernens“, ein neues Whitepaper zu KI für die Wissenschaft geschrieben, das sich mit der Frage „Wie beschleunigt künstliche Intelligenz die wissenschaftliche Entwicklung?“ befasst Helft die US-Regierung, dieses Ziel zu erreichen? ScienceAI hat den vollständigen Text des Original-Whitepapers zusammengestellt, ohne seine ursprüngliche Bedeutung zu ändern. Der Inhalt ist wie folgt. Der Bereich der künstlichen Intelligenz hat in jüngster Zeit erhebliche Fortschritte gemacht, einschließlich groß angelegter Sprachmodelle wie GPT, Claude und Gemini, was die Möglichkeit erhöht, dass sich die sehr positiven Auswirkungen der künstlichen Intelligenz möglicherweise erheblich beschleunigen
