


Golang-Anwendungen für maschinelles Lernen: Entwicklung intelligenter Algorithmen und datengesteuerter Lösungen
Verwenden Sie maschinelles Lernen in Golang, um intelligente Algorithmen und datengesteuerte Lösungen zu entwickeln: Installieren Sie die Gonum-Bibliothek für Algorithmen und Dienstprogramme für maschinelles Lernen. Lineare Regression mit dem LinearRegression-Modell von Gonum, einem überwachten Lernalgorithmus. Trainieren Sie das Modell mithilfe von Trainingsdaten, die Eingabevariablen und Zielvariablen enthalten. Prognostizieren Sie Immobilienpreise auf der Grundlage neuer Merkmale, aus denen das Modell eine lineare Beziehung ermittelt.
Golang-Anwendung für maschinelles Lernen: Entwicklung intelligenter Algorithmen und datengesteuerter Lösungen
Einführung
In der aktuellen datengesteuerten Ära ist maschinelles Lernen (ML) zu einer unverzichtbaren Technologie geworden, die es uns ermöglicht, zu extrahieren Erkenntnisse aus Daten gewinnen und intelligente Algorithmen entwickeln. Der Einsatz von Golang für maschinelles Lernen ermöglicht leistungsstarke und skalierbare ML-Anwendungen. In diesem Tutorial befassen wir uns eingehend mit der Verwendung beliebter Bibliotheken für maschinelles Lernen in Golang, um intelligente Algorithmen und datengesteuerte Lösungen zu erstellen.
Installieren Sie die Bibliothek
Zuerst müssen wir Golangs Bibliothek für maschinelles Lernen installieren. Wir empfehlen die Verwendung der [Gonum-Bibliothek](https://pkg.go.dev/gonum.org/v1/gonum), die eine breite Palette von ML-Algorithmen und Dienstprogrammen bereitstellt. Führen Sie zur Installation den folgenden Befehl aus:
go get gonum.org/v1/gonum
Praktischer Fall: Lineare Regression
Als praktischer Fall erstellen wir eine Anwendung, die den linearen Regressionsalgorithmus verwendet, um Immobilienpreise vorherzusagen. Bei der linearen Regression handelt es sich um einen überwachten Lernalgorithmus, der eine lineare Beziehung zwischen Eingabevariablen und einer Zielvariablen lernt.
Definieren Sie das Modell
Zuerst müssen wir ein LinearRegression
模型,可以使用 gonum
库中的 regression
Paket definieren:
import ( "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/stat/regression" ) type LinearRegression struct { model *regression.LinearRegression }
Trainieren Sie das Modell
Als nächstes trainieren wir das Modell mit den Trainingsdaten. Die Trainingsdaten enthalten Hauseigenschaften (z. B. Quadratmeterzahl, Anzahl der Schlafzimmer) und Hauspreise.
func (r *LinearRegression) Train(data [][]float64, labels []float64) error { if len(data) == 0 || len(labels) == 0 { return errors.New("invalid data or labels") } x := mat.NewDense(len(data), len(data[0])) y := mat.NewVecDense(len(labels), labels) for i, row := range data { for j, value := range row { x.Set(i, j, value) } } r.model = regression.LinearRegression{} if err := r.model.Fit(x, y); err != nil { return err } return nil }
Hauspreise vorhersagen
Sobald das Modell trainiert ist, können wir neue Funktionen zur Vorhersage von Hauspreisen verwenden:
func (r *LinearRegression) Predict(input []float64) (float64, error) { if len(input) != len(r.model.Predictors()) { return 0, errors.New("invalid input size") } x := mat.NewVecDense(len(input), input) return r.model.Predict(x), nil }
Fazit
In diesem Tutorial haben wir gelernt, wie man Bibliotheken für maschinelles Lernen in Golang zum Erstellen verwendet intelligente Algorithmen. Wir veranschaulichen den Prozess des Modelltrainings und der Modellvorhersage, indem wir einen praktischen Fall eines linearen Regressionsmodells erstellen. Golang eignet sich aufgrund seiner hohen Leistung und Skalierbarkeit ideal für die Erstellung von ML-Anwendungen zur Lösung komplexer realer Probleme.
Das obige ist der detaillierte Inhalt vonGolang-Anwendungen für maschinelles Lernen: Entwicklung intelligenter Algorithmen und datengesteuerter Lösungen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Das sichere Lesen und Schreiben von Dateien in Go ist von entscheidender Bedeutung. Zu den Richtlinien gehören: Überprüfen von Dateiberechtigungen, Schließen von Dateien mithilfe von Verzögerungen, Validieren von Dateipfaden, Verwenden von Kontext-Timeouts. Das Befolgen dieser Richtlinien gewährleistet die Sicherheit Ihrer Daten und die Robustheit Ihrer Anwendungen.

Wie konfiguriere ich Verbindungspooling für Go-Datenbankverbindungen? Verwenden Sie den DB-Typ im Datenbank-/SQL-Paket, um eine Datenbankverbindung zu erstellen. Legen Sie MaxOpenConns fest, um die maximale Anzahl gleichzeitiger Verbindungen festzulegen. Legen Sie ConnMaxLifetime fest, um den maximalen Lebenszyklus der Verbindung festzulegen.

JSON-Daten können mithilfe der gjson-Bibliothek oder der json.Unmarshal-Funktion in einer MySQL-Datenbank gespeichert werden. Die gjson-Bibliothek bietet praktische Methoden zum Parsen von JSON-Feldern, und die Funktion json.Unmarshal erfordert einen Zieltypzeiger zum Unmarshalieren von JSON-Daten. Bei beiden Methoden müssen SQL-Anweisungen vorbereitet und Einfügevorgänge ausgeführt werden, um die Daten in der Datenbank beizubehalten.

Der Unterschied zwischen dem GoLang-Framework und dem Go-Framework spiegelt sich in der internen Architektur und den externen Funktionen wider. Das GoLang-Framework basiert auf der Go-Standardbibliothek und erweitert deren Funktionalität, während das Go-Framework aus unabhängigen Bibliotheken besteht, um bestimmte Zwecke zu erreichen. Das GoLang-Framework ist flexibler und das Go-Framework ist einfacher zu verwenden. Das GoLang-Framework hat einen leichten Leistungsvorteil und das Go-Framework ist skalierbarer. Fall: Gin-Gonic (Go-Framework) wird zum Erstellen der REST-API verwendet, während Echo (GoLang-Framework) zum Erstellen von Webanwendungen verwendet wird.

Backend Learning Path: Die Erkundungsreise von Front-End zu Back-End als Back-End-Anfänger, der sich von der Front-End-Entwicklung verwandelt, Sie haben bereits die Grundlage von Nodejs, ...

Welche Bibliotheken in GO werden von großen Unternehmen oder bekannten Open-Source-Projekten entwickelt? Bei der Programmierung in Go begegnen Entwickler häufig auf einige häufige Bedürfnisse, ...

Go Language funktioniert gut beim Aufbau effizienter und skalierbarer Systeme. Zu den Vorteilen gehören: 1. hohe Leistung: Kompiliert in den Maschinencode, schnelle Laufgeschwindigkeit; 2. gleichzeitige Programmierung: Vereinfachen Sie Multitasking durch Goroutinen und Kanäle; 3. Einfachheit: präzise Syntax, Reduzierung der Lern- und Wartungskosten; 4. plattform: Unterstützt die plattformübergreifende Kompilierung, einfache Bereitstellung.

In Debian Systems stützt sich die Protokollrotation von GO normalerweise auf Bibliotheken von Drittanbietern und nicht auf die Funktionen, die mit Go-Standardbibliotheken ausgestattet sind. Lumberjack ist eine häufig verwendete Option. Es kann mit verschiedenen Protokoll -Frameworks (z. B. ZAP und LOGRUS) verwendet werden, um die automatische Rotation und Komprimierung von Protokolldateien zu realisieren. Hier ist eine Beispielkonfiguration mit den Lumberjack- und Zap -Bibliotheken: PackageMainimport ("gopkg.in/natefinch/lumberjack.v2" "go.uber.org/zap"
