


Ein Visualisierungstool, das Fehler in neuronalen Netzwerken finden kann, enthalten im Nature-Unterjournal
Kürzlich veröffentlichte die Teilzeitschrift „Nature“ ein Forschungsergebnis, das herausfinden kann, wo neuronale Netze schief gehen. Das Forschungsteam stellt eine Visualisierungsmethode bereit, die mithilfe der Topologie die Beziehung zwischen den Inferenzergebnissen neuronaler Netze und ihrer Klassifizierung beschreibt. Dieses Ergebnis kann Forschern dabei helfen, auf die spezifischen Umstände der Verwirrung beim Denken in neuronalen Netzen zu schließen und Systeme der künstlichen Intelligenz transparenter zu machen.
-
Spitzen neuronaler Netze offenbaren Inferenzfehler:
- Forschung findet Datendiagrammspitzen bei Inferenzen neuronaler Netze, die Urteile verwischen und damit verbundene Fehler erzeugen.
- Das Beobachten von Spitzen kann dabei helfen, Fehlerquellen in KI-Systemen zu identifizieren.
-
Mangelnde Transparenz im Denkprozess neuronaler Netze:
- Neuronale Netze können Probleme gut lösen, aber ihr Denkprozess ist undurchsichtig, was Bedenken hinsichtlich der Zuverlässigkeit aufkommen lässt.
- Neue Forschungsergebnisse bieten eine Möglichkeit, die Fehlerquelle in neuronalen Netzen zu entdecken.
-
Die „Black Box“-Eigenschaften neuronaler Netze:
- Für neuronale Netze ist es schwierig zu verstehen, wie Probleme gelöst werden können, was es schwierig macht, die Richtigkeit der Antwort zu beurteilen.
- Forscher können den Entscheidungsprozess des neuronalen Netzwerks nicht für eine einzelne Probe nachvollziehen.
-
Entscheidungsergebnisse visualisieren:
- Anstatt die Entscheidungen einzelner Proben zu verfolgen, visualisierten die Forscher die Beziehung zwischen den Entscheidungsergebnissen des neuronalen Netzwerks für die gesamte Datenbank und den Proben.
- Dies hilft dabei, Bilder mit höherer Mehrklassenwahrscheinlichkeit zu identifizieren.
-
Topologische Datenanalyse:
- Forscher verwenden Topologie, um die Beziehung zwischen Inferenzergebnissen und Klassifizierung darzustellen.
- Topologische Datenanalysetools helfen dabei, Ähnlichkeiten zwischen Datensätzen zu identifizieren.
- Dieses Tool wurde verwendet, um die Beziehung zwischen Brustkrebs-Untergruppen und Genen zu analysieren.
Link zum Papier: https://www.nature.com/articles/s42256-023-00749-8
Im Beziehungsdiagramm, das basierend auf den neuen Forschungsergebnissen erstellt wurde:
- Jeder Punkt stellt einen neuronalen Punkt dar Netzwerk Gruppen von Bildern, die als zusammenhängend gelten
- Karten verschiedener Kategorien werden durch unterschiedliche Farben dargestellt
- Je geringer der Abstand zwischen den Punkten, desto ähnlicher betrachtet das neuronale Netzwerk jede Bildgruppe
Die meisten dieser Karten zeigen einen einzelnen Farbpunkt Gruppe.
Der neue Ansatz des Teams hilft aufzudecken, „was schief gelaufen ist“. Gleich sagte: „Die Analyse von Daten auf dieser Ebene ermöglicht es Wissenschaftlern, nicht nur eine Reihe nützlicher Vorhersagen zu neuen Daten zu treffen, sondern auch tiefgreifend zu verstehen, wie neuronale Netze ihre Daten verarbeiten könnten.“ „Die Trainingsdaten selbst enthalten Fehler“, sagte Gleich. „Menschen machen Fehler, wenn sie Daten manuell kennzeichnen.“
Mögliche Einsatzmöglichkeiten dieser Analysestrategie könnten besonders wichtige Anwendungen neuronaler Netze sein. Denken Sie beispielsweise an die Anwendung neuronaler Netze im Gesundheitswesen oder in der Medizin zur Untersuchung von Sepsis oder Hautkrebs.
Kritiker argumentieren, dass KI-Systeme frühere Fehler wiederholen werden, da die meisten neuronalen Netze auf Entscheidungen aus der Vergangenheit trainiert werden, die bereits bestehende Vorurteile gegenüber menschlichen Gruppen widerspiegeln. Einen Weg zu finden, „Voreingenommenheit oder Voreingenommenheit in Vorhersagen zu verstehen“ mithilfe neuer Tools könnte ein erheblicher Fortschritt sein, sagte Gleich.
Gleich sagte, das neue Tool könne mit neuronalen Netzen verwendet werden, um aus kleinen Datensätzen spezifische Vorhersagen zu generieren, etwa „ob eine genetische Mutation wahrscheinlich schädlich ist.“ Bisher haben Forscher jedoch keine Möglichkeit, es auf große Sprachmodelle oder Diffusionsmodelle anzuwenden.
Weitere Informationen finden Sie im Originalpapier.
Referenzinhalt:
https://spectrum.ieee.org/ai-mistakes
https://www.cs.purdue.edu/homes/liu1740/
https://www.cs.purdue.edu/homes/ tamaldey/
https://www.cs.purdue.edu/homes/dgleich/
Das obige ist der detaillierte Inhalt vonEin Visualisierungstool, das Fehler in neuronalen Netzwerken finden kann, enthalten im Nature-Unterjournal. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Es ist ebenfalls ein Tusheng-Video, aber PaintsUndo ist einen anderen Weg gegangen. ControlNet-Autor LvminZhang begann wieder zu leben! Dieses Mal ziele ich auf den Bereich der Malerei. Das neue Projekt PaintsUndo hat nicht lange nach seinem Start 1,4.000 Sterne erhalten (die immer noch wahnsinnig steigen). Projektadresse: https://github.com/lllyasviel/Paints-UNDO Bei diesem Projekt gibt der Benutzer ein statisches Bild ein, und PaintsUndo kann Ihnen dabei helfen, automatisch ein Video des gesamten Malprozesses zu erstellen, vom Linienentwurf bis zum fertigen Produkt . Während des Zeichenvorgangs sind die Linienänderungen erstaunlich. Das Endergebnis des Videos ist dem Originalbild sehr ähnlich: Schauen wir uns eine vollständige Zeichnung an.

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Im Entwicklungsprozess der künstlichen Intelligenz war die Steuerung und Führung großer Sprachmodelle (LLM) schon immer eine der zentralen Herausforderungen, um sicherzustellen, dass diese Modelle beides sind kraftvoll und sicher dienen der menschlichen Gesellschaft. Frühe Bemühungen konzentrierten sich auf Methoden des verstärkenden Lernens durch menschliches Feedback (RL

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. Einreichungs-E-Mail: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com Die Autoren dieses Artikels stammen alle aus dem Team von Lehrer Zhang Lingming an der University of Illinois in Urbana-Champaign, darunter: Steven Code Repair; Doktorand im vierten Jahr, Forscher

Prost! Wie ist es, wenn es bei einer Papierdiskussion auf Worte ankommt? Kürzlich haben Studenten der Stanford University alphaXiv erstellt, ein offenes Diskussionsforum für arXiv-Artikel, das es ermöglicht, Fragen und Kommentare direkt zu jedem arXiv-Artikel zu posten. Website-Link: https://alphaxiv.org/ Tatsächlich ist es nicht erforderlich, diese Website speziell zu besuchen. Ändern Sie einfach arXiv in einer beliebigen URL in alphaXiv, um den entsprechenden Artikel direkt im alphaXiv-Forum zu öffnen: Sie können die Absätze darin genau lokalisieren das Papier, Satz: Im Diskussionsbereich auf der rechten Seite können Benutzer Fragen stellen, um dem Autor Fragen zu den Ideen und Details des Papiers zu stellen. Sie können beispielsweise auch den Inhalt des Papiers kommentieren, wie zum Beispiel: „Gegeben an.“

Kürzlich gelang der Riemann-Hypothese, die als eines der sieben großen Probleme des Jahrtausends bekannt ist, ein neuer Durchbruch. Die Riemann-Hypothese ist ein sehr wichtiges ungelöstes Problem in der Mathematik, das sich auf die genauen Eigenschaften der Verteilung von Primzahlen bezieht (Primzahlen sind Zahlen, die nur durch 1 und sich selbst teilbar sind, und sie spielen eine grundlegende Rolle in der Zahlentheorie). In der heutigen mathematischen Literatur gibt es mehr als tausend mathematische Thesen, die auf der Aufstellung der Riemann-Hypothese (oder ihrer verallgemeinerten Form) basieren. Mit anderen Worten: Sobald die Riemann-Hypothese und ihre verallgemeinerte Form bewiesen sind, werden diese mehr als tausend Sätze als Theoreme etabliert, die einen tiefgreifenden Einfluss auf das Gebiet der Mathematik haben werden, und wenn sich die Riemann-Hypothese als falsch erweist, dann unter anderem Auch diese Sätze werden teilweise ihre Gültigkeit verlieren. Neuer Durchbruch kommt von MIT-Mathematikprofessor Larry Guth und der Universität Oxford

Wenn die Antwort des KI-Modells überhaupt unverständlich ist, würden Sie es wagen, sie zu verwenden? Da maschinelle Lernsysteme in immer wichtigeren Bereichen eingesetzt werden, wird es immer wichtiger zu zeigen, warum wir ihren Ergebnissen vertrauen können und wann wir ihnen nicht vertrauen sollten. Eine Möglichkeit, Vertrauen in die Ausgabe eines komplexen Systems zu gewinnen, besteht darin, vom System zu verlangen, dass es eine Interpretation seiner Ausgabe erstellt, die für einen Menschen oder ein anderes vertrauenswürdiges System lesbar ist, d. h. so vollständig verständlich, dass mögliche Fehler erkannt werden können gefunden. Um beispielsweise Vertrauen in das Justizsystem aufzubauen, verlangen wir von den Gerichten, dass sie klare und lesbare schriftliche Stellungnahmen abgeben, die ihre Entscheidungen erläutern und stützen. Für große Sprachmodelle können wir auch einen ähnlichen Ansatz verfolgen. Stellen Sie bei diesem Ansatz jedoch sicher, dass das Sprachmodell generiert wird

Können Sprachmodelle wirklich zur Zeitreihenvorhersage verwendet werden? Gemäß Betteridges Gesetz der Schlagzeilen (jede Schlagzeile, die mit einem Fragezeichen endet, kann mit „Nein“ beantwortet werden) sollte die Antwort „Nein“ lauten. Die Tatsache scheint wahr zu sein: Ein so leistungsstarkes LLM kann mit Zeitreihendaten nicht gut umgehen. Zeitreihen, also Zeitreihen, beziehen sich, wie der Name schon sagt, auf eine Reihe von Datenpunktsequenzen, die in der Reihenfolge ihres Auftretens angeordnet sind. Die Zeitreihenanalyse ist in vielen Bereichen von entscheidender Bedeutung, einschließlich der Vorhersage der Ausbreitung von Krankheiten, Einzelhandelsanalysen, Gesundheitswesen und Finanzen. Im Bereich der Zeitreihenanalyse haben viele Forscher in letzter Zeit untersucht, wie man mithilfe großer Sprachmodelle (LLM) Anomalien in Zeitreihen klassifizieren, vorhersagen und erkennen kann. Diese Arbeiten gehen davon aus, dass Sprachmodelle, die gut mit sequentiellen Abhängigkeiten in Texten umgehen können, auch auf Zeitreihen verallgemeinert werden können.

Die AIxiv-Kolumne ist eine Kolumne, in der diese Website akademische und technische Inhalte veröffentlicht. In den letzten Jahren sind in der AIxiv-Kolumne dieser Website mehr als 2.000 Berichte eingegangen, die Spitzenlabore großer Universitäten und Unternehmen auf der ganzen Welt abdecken und so den akademischen Austausch und die Verbreitung wirksam fördern. Wenn Sie hervorragende Arbeiten haben, die Sie teilen möchten, können Sie gerne einen Beitrag leisten oder uns für die Berichterstattung kontaktieren. E-Mail-Adresse: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Einleitung In den letzten Jahren hat die Anwendung multimodaler großer Sprachmodelle (MLLM) in verschiedenen Bereichen bemerkenswerte Erfolge erzielt. Als Grundmodell für viele nachgelagerte Aufgaben besteht aktuelles MLLM jedoch aus dem bekannten Transformer-Netzwerk, das
