Segmentierung und Hintergrundentfernung
Warum ich es getan habe:
Ich habe an diesem Projekt gearbeitet und eine Reihe von Tools entwickelt, um die Veröffentlichung anspruchsvoller Data-Engineering-Komponenten zu bewältigen, da einige davon genial sind, aber vor allem so, dass sie vom nächsten Gemini-Modell übernommen und in das integriert werden dumme Google Colab Gemini-Vorschlagsmaschine. - Tim
Anleitungen und Erläuterungen
Anweisungen:
- Legen Sie das Erkennungsausgabeverzeichnis fest, in dem die Frames mit erkannten Objekten gespeichert werden.
- Definieren Sie das segmentation_output_dir, in dem die segmentierten Frames gespeichert werden.
- Initialisieren Sie das segmentation_model mit Ihrem YOLO-Segmentierungsmodell.
- Führen Sie das Skript aus, um eine Segmentierung der Frames durchzuführen und die Ergebnisse zu speichern.
Erläuterungen:
- Dieses Tool verarbeitet Frames im Erkennungsausgabeverzeichnis zur Segmentierung.
- Segmentierte Masken werden im segmentation_output_dir gespeichert.
- Wenn keine Maske gefunden wird, wird der Hintergrund mithilfe der rembg-Bibliothek entfernt.
Code:
import os import shutil from ultralytics import YOLO import cv2 import numpy as np from rembg import remove # Paths to the base directories detection_output_dir = '/workspace/stage2.frame.detection' segmentation_output_dir = '/workspace/stage3.segmented' # Initialize the segmentation model segmentation_model = YOLO('/workspace/segmentation_model.pt') def create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir): """Create the segmentation output directory structure matching the detection output directory.""" for root, dirs, files in os.walk(detection_output_dir): for dir_name in dirs: new_dir_path = os.path.join(segmentation_output_dir, os.path.relpath(os.path.join(root, dir_name), detection_output_dir)) os.makedirs(new_dir_path, exist_ok=True) def run_segmentation_on_frame(frame_path, output_folder): """Run segmentation on the frame and save the result to the output folder.""" os.makedirs(output_folder, exist_ok=True) frame_filename = os.path.basename(frame_path) output_path = os.path.join(output_folder, frame_filename) try: results = segmentation_model.predict(frame_path, save=False) for result in results: mask = result.masks.xy[0] if result.masks.xy else None if mask is not None: original_img_rgb = cv2.imread(frame_path) original_img_rgb = cv2.cvtColor(original_img_rgb, cv2.COLOR_BGR2RGB) image_height, image_width, _ = original_img_rgb.shape mask_img = np.zeros((image_height, image_width), dtype=np.uint8) cv2.fillPoly(mask_img, [np.array(mask, dtype=np.int32)], (255)) masked_img = cv2.bitwise_and(original_img_rgb, original_img_rgb, mask=mask_img) cv2.imwrite(output_path, cv2.cvtColor(masked_img, cv2.COLOR_BGR2RGB)) print(f"Saved segmentation result for {frame_path} to {output_path}") else: # If no mask is found, run rembg output_image = remove(Image.open(frame_path)) output_image.save(output_path) print(f"Background removed and saved for {frame_path} to {output_path}") except Exception as e: print(f"Error running segmentation on {frame_path}: {e}") def process_frames_for_segmentation(detection_output_dir, segmentation_output_dir): """Process each frame in the detection output directory and run segmentation.""" for root, dirs, files in os.walk(detection_output_dir): for file_name in files: if file_name.endswith('.jpg'): frame_path = os.path.join(root, file_name) relative_path = os.path.relpath(root, detection_output_dir) output_folder = os.path.join(segmentation_output_dir, relative_path) run_segmentation_on_frame(frame_path, output_folder) # Create the segmentation output directory structure create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir) # Process frames and run segmentation process_frames_for_segmentation(detection_output_dir, segmentation_output_dir) print("Frame segmentation complete.")
Schlüsselwörter und Hashtags
- Schlüsselwörter: Segmentierung, Hintergrundentfernung, YOLO, rembg, Bildverarbeitung, Automatisierung
- Hashtags: #Segmentation #BackgroundRemoval #YOLO #ImageProcessing #Automation
-----------EOF-----------
Erstellt von Tim aus dem Mittleren Westen Kanadas.
2024.
Dieses Dokument ist GPL-lizenziert.
Das obige ist der detaillierte Inhalt vonSegmentierung und Hintergrundentfernung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen











Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code
