Ich habe an diesem Projekt gearbeitet und eine Reihe von Tools entwickelt, um die Veröffentlichung anspruchsvoller Data-Engineering-Komponenten zu bewältigen, da einige davon genial sind, aber vor allem so, dass sie vom nächsten Gemini-Modell übernommen und in das integriert werden dumme Google Colab Gemini-Vorschlagsmaschine. - Tim
import os import shutil import cv2 import numpy as np import json from PIL import Image import random import string from rembg import remove import ffmpeg from datetime import timedelta from ultralytics import YOLO import whisperx import gc gc.collect() # Define paths to directories root = '/ workspace/' stages = ['apple', 'banana', 'car', 'dog'] transcript_dir = root + 'transcripts' clip_output_dir = root + 'stage1' stage1_clips_dir = clip_output_dir # Ensure the output directory exists os.makedirs(transcript_dir, exist_ok=True) os.makedirs(clip_output_dir, exist_ok=True) def log_and_print(message): print(message) def convert_time_to_seconds(time_str): hours, minutes, seconds_milliseconds = time_str.split(':') seconds, milliseconds = seconds_milliseconds.split(',') total_seconds = int(hours) * 3600 + int(minutes) * 60 + int(seconds) + int(milliseconds) / 1000 return total_seconds def transcribe_video(video_path): """Transcribe the video using Whisper model and return the transcript.""" compute_type = "float32" model = whisperx.load_model("large-v2", device='cpu', compute_type=compute_type) audio = whisperx.load_audio(video_path) result = model.transcribe(audio, batch_size=4, language="en") model_a, metadata = whisperx.load_align_model(language_code=result["language"], device='cpu') aligned_result = whisperx.align(result["segments"], model_a, metadata, audio, 'cpu', return_char_alignments=False) segments = aligned_result["segments"] transcript = [] for index, segment in enumerate(segments): start_time = str(0) + str(timedelta(seconds=int(segment['start']))) + ',000' end_time = str(0) + str(timedelta(seconds=int(segment['end']))) + ',000' text = segment['text'] segment_text = { "index": index + 1, "start_time": start_time, "end_time": end_time, "text": text.strip(), } transcript.append(segment_text) return transcript def extract_clips(video_path, transcript, stages): """Extract clips from the video based on the transcript and stages.""" base_filename = os.path.splitext(os.path.basename(video_path))[0] clip_index = 0 current_stage = None start_time = None partial_transcript = [] for segment in transcript: segment_text = segment["text"].lower() for stage in stages: if stage in segment_text: if current_stage is not None: end_time = convert_time_to_seconds(segment["start_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") partial_transcript = [] current_stage = stage start_time = convert_time_to_seconds(segment["start_time"]) partial_transcript.append(segment) if current_stage is not None: end_time = convert_time_to_seconds(transcript[-1]["end_time"]) output_clip_filename = f"{base_filename}.{current_stage}.mp4" output_clip = os.path.join(clip_output_dir, output_clip_filename) if not os.path.exists(output_clip): try: ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264', pix_fmt='yuv420p').run(overwrite_output=True) log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}") except ffmpeg.Error as e: log_and_print(f"Error extracting clip: {e}") transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript]) transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json") with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript_text, f, ensure_ascii=False, indent=4) log_and_print(f"Saved partial transcript to {transcript_path}") def process_transcripts(input_dir, transcript_dir, stages): """Process each video file to generate transcripts and extract clips.""" video_files = [f for f in os.listdir(input_dir) if f.endswith('.mp4') or f.endswith('.MOV') or f.endswith('.mov')] for video_file in video_files: video_path = os.path.join(input_dir, video_file) transcript_path = os.path.join(transcript_dir, os.path.splitext(video_file)[0] + ".json") if not os.path.exists(transcript_path): transcript = transcribe_video(video_path) with open(transcript_path, 'w', encoding='utf-8') as f: json.dump(transcript, f, ensure_ascii=False, indent=4) log_and_print(f"Created transcript for {video_path}") else: with open(transcript_path, 'r', encoding='utf-8') as f: transcript = json.load(f) extract_clips(video_path, transcript, stages) process_transcripts(root, transcript_dir, stages)
-----------EOF-----------
Erstellt von Tim aus dem Mittleren Westen Kanadas.
2024.
Dieses Dokument ist GPL-lizenziert.
Das obige ist der detaillierte Inhalt vonBenutzerdefinierte Transkriptions- und Clipping-Pipeline. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!