Heim Technologie-Peripheriegeräte KI Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Jul 18, 2024 pm 02:43 PM
产业 EAGLE

Große Sprachmodelle (LLM) werden zunehmend in verschiedenen Bereichen eingesetzt. Allerdings ist ihr Textgenerierungsprozess teuer und langsam. Diese Ineffizienz wird dem Algorithmus der autoregressiven Dekodierung zugeschrieben: Die Generierung jedes Worts (Tokens) erfordert einen Vorwärtsdurchlauf, der Zugriff auf ein LLM mit Milliarden bis Hunderten von Milliarden Parametern erfordert. Dies führt dazu, dass die herkömmliche autoregressive Dekodierung langsamer ist.

Kürzlich haben die University of Waterloo, das Canadian Vector Institute, die Peking University und andere Institutionen gemeinsam EAGLE veröffentlicht, das darauf abzielt, die Inferenzgeschwindigkeit großer Sprachmodelle zu verbessern und gleichzeitig eine konsistente Verteilung des Modellausgabetextes sicherzustellen. Diese Methode extrapoliert den zweiten Merkmalsvektor der obersten Ebene von LLM, was die Generierungseffizienz erheblich verbessern kann.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

  • Technischer Bericht: https://sites.google.com/view/eagle-llm
  • Code (unterstützt kommerzielles Apache 2.0): https://github.com/SafeAILab/EAGLE

EAGLE hat die folgenden Funktionen:

  • 3-mal schneller als gewöhnliche autoregressive Dekodierung (13B);
  • 2-mal schneller als Lookahead-Dekodierung (13B);
  • als Medusa Decode (13B) 1,6-mal schneller;
  • kann bei der Verteilung des generierten Textes nachweislich konsistent sein
  • kann auf RTX 3090 trainiert und getestet werden;
    kann in Verbindung mit anderen parallelen Technologien wie vLLM, DeepSpeed, Mamba, FlashAttention, Quantisierung und Hardwareoptimierung verwendet werden.
Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlichtDie Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht
Eine Möglichkeit, die autoregressive Dekodierung zu beschleunigen, ist das spekulative Sampling. Diese Technik verwendet ein kleineres Entwurfsmodell, um die nächsten mehreren Wörter über die standardmäßige autoregressive Generierung zu erraten. Das ursprüngliche LLM überprüft dann diese erratenen Wörter parallel (wobei nur ein Vorwärtsdurchlauf zur Überprüfung erforderlich ist). Wenn das Entwurfsmodell α-Wörter genau vorhersagt, kann ein einziger Vorwärtsdurchlauf des ursprünglichen LLM α+1-Wörter erzeugen.
Beim spekulativen Sampling besteht die Aufgabe des Entwurfsmodells darin, das nächste Wort basierend auf der aktuellen Wortfolge vorherzusagen. Die Bewältigung dieser Aufgabe mit einem Modell mit einer deutlich geringeren Anzahl von Parametern ist äußerst anspruchsvoll und führt häufig zu suboptimalen Ergebnissen. Darüber hinaus sagt das Entwurfsmodell im standardmäßigen spekulativen Sampling-Ansatz das nächste Wort unabhängig voraus, ohne die umfangreichen semantischen Informationen zu nutzen, die vom ursprünglichen LLM extrahiert wurden, was zu potenziellen Ineffizienzen führt.
Diese Einschränkung inspirierte die Entwicklung von EAGLE. EAGLE nutzt die vom ursprünglichen LLM extrahierten Kontextmerkmale (d. h. den von der zweitobersten Ebene des Modells ausgegebenen Merkmalsvektor). EAGLE basiert auf den folgenden ersten Prinzipien:
Merkmalsvektorsequenzen sind komprimierbar, sodass es einfacher ist, nachfolgende Merkmalsvektoren basierend auf vorherigen Merkmalsvektoren vorherzusagen.
EAGLE trainiert ein leichtes Plug-in namens Auto-Regression Head, das zusammen mit der Worteinbettungsschicht das nächste Feature aus der zweitobersten Ebene des Originalmodells basierend auf der aktuellen Feature-Sequenz vorhersagt. Der eingefrorene Klassifizierungskopf des ursprünglichen LLM wird dann verwendet, um das nächste Wort vorherzusagen. Merkmale enthalten mehr Informationen als Wortsequenzen, was die Aufgabe der Regression von Merkmalen viel einfacher macht als die Aufgabe, Wörter vorherzusagen. Zusammenfassend lässt sich sagen, dass EAGLE auf der Merkmalsebene extrapoliert, indem es einen kleinen autoregressiven Kopf verwendet und dann einen eingefrorenen Klassifizierungskopf verwendet, um vorhergesagte Wortsequenzen zu generieren. Im Einklang mit ähnlichen Arbeiten wie Speculative Sampling, Medusa und Lookahead konzentriert sich EAGLE auf die Latenz der Inferenz pro Cue und nicht auf den Gesamtsystemdurchsatz.

EAGLE – eine Methode zur Steigerung der Effizienz der Generierung großer Sprachmodelle
Die obige Abbildung zeigt den Unterschied in der Eingabe und Ausgabe zwischen EAGLE und der standardmäßigen spekulativen Stichprobe, Medusa und Lookahead. Die folgende Abbildung zeigt den Workflow von EAGLE. Im Vorwärtsdurchlauf des ursprünglichen LLM sammelt EAGLE Features aus der zweitobersten Ebene. Der autoregressive Kopf nimmt diese Merkmale und die Worteinbettungen zuvor generierter Wörter als Eingabe und beginnt, das nächste Wort zu erraten. Anschließend wird der eingefrorene Klassifizierungskopf (LM Head) verwendet, um die Verteilung des nächsten Wortes zu bestimmen, sodass EAGLE eine Stichprobe aus dieser Verteilung ziehen kann. Durch mehrmaliges Wiederholen der Stichproben führt EAGLE einen baumartigen Generierungsprozess durch, wie auf der rechten Seite der folgenden Abbildung dargestellt. In diesem Beispiel „erriet“ der dreifache Vorwärtspass von EAGLE einen Baum mit 10 Wörtern.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

EAGLE verwendet einen leichten autoregressiven Kopf, um Merkmale des ursprünglichen LLM vorherzusagen. Um die Konsistenz der generierten Textverteilung sicherzustellen, validiert EAGLE anschließend die vorhergesagte Baumstruktur. Dieser Verifizierungsprozess kann mit einem Vorwärtsdurchgang abgeschlossen werden. Durch diesen Zyklus aus Vorhersage und Überprüfung ist EAGLE in der Lage, schnell Textwörter zu generieren.

Die Kosten für das Training eines autoregressiven Kopfes sind sehr gering. EAGLE wird mithilfe des ShareGPT-Datensatzes trainiert, der knapp 70.000 Dialogrunden enthält. Auch die Anzahl der trainierbaren Parameter des autoregressiven Kopfes ist sehr gering. Wie im Bild oben blau dargestellt, sind die meisten Komponenten eingefroren. Das einzige zusätzliche Training, das erforderlich ist, ist der autoregressive Kopf, bei dem es sich um eine einschichtige Transformer-Struktur mit Parametern von 0,24 B bis 0,99 B handelt. Autoregressive Köpfe können auch dann trainiert werden, wenn die GPU-Ressourcen begrenzt sind. Beispielsweise kann die autoregressive Regression von Vicuna 33B in 24 Stunden auf einem RTX 3090-Server mit 8 Karten trainiert werden.

Warum Worteinbettungen verwenden, um Funktionen vorherzusagen?

Medusa verwendet nur die Funktionen der zweitobersten Ebene, um das nächste Wort vorherzusagen, das nächste Wort ... Im Gegensatz zu Medusa verwendet EAGLE auch dynamisch die aktuell abgetastete Worteinbettung als autoregressiven Kopfeingabeteil, um Vorhersagen zu treffen. Diese zusätzlichen Informationen helfen EAGLE, mit der unvermeidlichen Zufälligkeit im Stichprobenprozess umzugehen. Betrachten Sie das Beispiel im Bild unten, wobei davon ausgegangen wird, dass das Aufforderungswort „I“ ist. LLM gibt die Wahrscheinlichkeit an, dass auf „ich“ ein „bin“ oder „immer“ folgt. Medusa berücksichtigt nicht, ob „am“ oder „immer“ abgetastet wird, und sagt direkt die Wahrscheinlichkeit des nächsten Wortes unter „I“ voraus. Daher besteht Medusas Ziel darin, das nächste Wort für „Ich bin“ oder „Ich immer“ vorherzusagen, wenn nur „Ich“ gegeben wird. Aufgrund der zufälligen Natur des Sampling-Prozesses kann die gleiche Eingabe „I“ für Medusa ein unterschiedliches nächstes Wort als Ausgabe „ready“ oder „begin“ haben, was zu einem Mangel an konsistenter Zuordnung zwischen Eingaben und Ausgaben führt. Im Gegensatz dazu umfasst die Eingabe in EAGLE die Worteinbettungen der Stichprobenergebnisse, wodurch eine konsistente Zuordnung zwischen Eingabe und Ausgabe gewährleistet wird. Diese Unterscheidung ermöglicht es EAGLE, nachfolgende Wörter genauer vorherzusagen, indem der durch den Sampling-Prozess erstellte Kontext berücksichtigt wird.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Baumartige Generationsstruktur

Anders als andere Rate-Verifizierungs-Frameworks wie Speculative Sampling, Lookahead und Medusa übernimmt EAGLE dabei in der Phase des „Rateworts“ eine baumartige Generationsstruktur Erzielung einer höheren Dekodierungseffizienz. Wie in der Abbildung gezeigt, ist der Generierungsprozess der standardmäßigen spekulativen Stichprobenziehung und Lookahead linear oder verkettet. Da der Kontext während der Ratephase nicht konstruiert werden kann, generiert die Methode von Medusa Bäume durch das kartesische Produkt, was zu einem vollständig verbundenen Diagramm zwischen benachbarten Schichten führt. Dieser Ansatz führt oft zu bedeutungslosen Kombinationen, wie zum Beispiel „Ich fange an“. Im Gegensatz dazu erstellt EAGLE eine spärlichere Baumstruktur. Diese spärliche Baumstruktur verhindert die Bildung bedeutungsloser Sequenzen und konzentriert die Rechenressourcen auf sinnvollere Wortkombinationen.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Mehrere Runden spekulativer Stichprobenziehung

Die standardmäßige spekulative Stichprobenmethode behält die Konsistenz der Verteilung während des Prozesses des „Erratens von Wörtern“ bei. Um sich an baumartige Wortratenszenarien anzupassen, erweitert EAGLE diese Methode in eine mehrrundenrekursive Form. Im Folgenden wird der Pseudocode für mehrere Runden spekulativer Stichprobenentnahme dargestellt. Während des Baumgenerierungsprozesses zeichnet EAGLE die Wahrscheinlichkeit auf, die jedem abgetasteten Wort entspricht. Durch mehrere Runden spekulativer Stichproben stellt EAGLE sicher, dass die endgültig generierte Verteilung jedes Wortes mit der des ursprünglichen LLM übereinstimmt.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Weitere experimentelle Ergebnisse

Die folgende Abbildung zeigt die Beschleunigungswirkung von EAGLE auf Vicuna 33B bei verschiedenen Aufgaben. „Coding“-Aufgaben mit einer großen Anzahl fester Vorlagen zeigen die beste Beschleunigungsleistung.

Die Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht

Begrüßen Sie alle, EAGLE zu erleben und Feedback und Vorschläge über die GitHub-Ausgabe zu geben: https://github.com/SafeAILab/EAGLE/issues

Das obige ist der detaillierte Inhalt vonDie Inferenzeffizienz großer Modelle wurde ohne Verlust um das Dreifache verbessert. Die University of Waterloo, die Peking University und andere Institutionen haben EAGLE veröffentlicht. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
<🎜> obscur: Expedition 33 - So erhalten Sie perfekte Chroma -Katalysatoren
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1677
14
PHP-Tutorial
1278
29
C#-Tutorial
1257
24
Der DeepMind-Roboter spielt Tischtennis und seine Vor- und Rückhand rutschen in die Luft, wodurch menschliche Anfänger völlig besiegt werden Der DeepMind-Roboter spielt Tischtennis und seine Vor- und Rückhand rutschen in die Luft, wodurch menschliche Anfänger völlig besiegt werden Aug 09, 2024 pm 04:01 PM

Aber vielleicht kann er den alten Mann im Park nicht besiegen? Die Olympischen Spiele in Paris sind in vollem Gange und Tischtennis hat viel Aufmerksamkeit erregt. Gleichzeitig haben Roboter auch beim Tischtennisspielen neue Durchbrüche erzielt. Gerade hat DeepMind den ersten lernenden Roboteragenten vorgeschlagen, der das Niveau menschlicher Amateurspieler im Tischtennis-Wettkampf erreichen kann. Papieradresse: https://arxiv.org/pdf/2408.03906 Wie gut ist der DeepMind-Roboter beim Tischtennisspielen? Vermutlich auf Augenhöhe mit menschlichen Amateurspielern: Sowohl Vorhand als auch Rückhand: Der Gegner nutzt unterschiedliche Spielstile, und auch der Roboter hält aus: Aufschlagannahme mit unterschiedlichem Spin: Allerdings scheint die Intensität des Spiels nicht so intensiv zu sein wie Der alte Mann im Park. Für Roboter, Tischtennis

Die erste mechanische Klaue! Yuanluobao trat auf der Weltroboterkonferenz 2024 auf und stellte den ersten Schachroboter vor, der das Haus betreten kann Die erste mechanische Klaue! Yuanluobao trat auf der Weltroboterkonferenz 2024 auf und stellte den ersten Schachroboter vor, der das Haus betreten kann Aug 21, 2024 pm 07:33 PM

Am 21. August fand in Peking die Weltroboterkonferenz 2024 im großen Stil statt. Die Heimrobotermarke „Yuanluobot SenseRobot“ von SenseTime hat ihre gesamte Produktfamilie vorgestellt und kürzlich den Yuanluobot AI-Schachspielroboter – Chess Professional Edition (im Folgenden als „Yuanluobot SenseRobot“ bezeichnet) herausgebracht und ist damit der weltweit erste A-Schachroboter für heim. Als drittes schachspielendes Roboterprodukt von Yuanluobo hat der neue Guoxiang-Roboter eine Vielzahl spezieller technischer Verbesserungen und Innovationen in den Bereichen KI und Maschinenbau erfahren und erstmals die Fähigkeit erkannt, dreidimensionale Schachfiguren aufzunehmen B. durch mechanische Klauen an einem Heimroboter, und führen Sie Mensch-Maschine-Funktionen aus, z. B. Schach spielen, jeder spielt Schach, Überprüfung der Notation usw.

Claude ist auch faul geworden! Netizen: Lernen Sie, sich einen Urlaub zu gönnen Claude ist auch faul geworden! Netizen: Lernen Sie, sich einen Urlaub zu gönnen Sep 02, 2024 pm 01:56 PM

Der Schulstart steht vor der Tür und nicht nur die Schüler, die bald ins neue Semester starten, sollten auf sich selbst aufpassen, sondern auch die großen KI-Modelle. Vor einiger Zeit war Reddit voller Internetnutzer, die sich darüber beschwerten, dass Claude faul werde. „Sein Niveau ist stark gesunken, es kommt oft zu Pausen und sogar die Ausgabe wird sehr kurz. In der ersten Woche der Veröffentlichung konnte es ein komplettes 4-seitiges Dokument auf einmal übersetzen, aber jetzt kann es nicht einmal eine halbe Seite ausgeben.“ !

Auf der Weltroboterkonferenz wurde dieser Haushaltsroboter, der „die Hoffnung auf eine zukünftige Altenpflege' in sich trägt, umzingelt Auf der Weltroboterkonferenz wurde dieser Haushaltsroboter, der „die Hoffnung auf eine zukünftige Altenpflege' in sich trägt, umzingelt Aug 22, 2024 pm 10:35 PM

Auf der World Robot Conference in Peking ist die Präsentation humanoider Roboter zum absoluten Mittelpunkt der Szene geworden. Am Stand von Stardust Intelligent führte der KI-Roboterassistent S1 drei große Darbietungen mit Hackbrett, Kampfkunst und Kalligraphie auf Ein Ausstellungsbereich, der sowohl Literatur als auch Kampfkunst umfasst, zog eine große Anzahl von Fachpublikum und Medien an. Durch das elegante Spiel auf den elastischen Saiten demonstriert der S1 eine feine Bedienung und absolute Kontrolle mit Geschwindigkeit, Kraft und Präzision. CCTV News führte einen Sonderbericht über das Nachahmungslernen und die intelligente Steuerung hinter „Kalligraphie“ durch. Firmengründer Lai Jie erklärte, dass hinter den seidenweichen Bewegungen die Hardware-Seite die beste Kraftkontrolle und die menschenähnlichsten Körperindikatoren (Geschwindigkeit, Belastung) anstrebt. usw.), aber auf der KI-Seite werden die realen Bewegungsdaten von Menschen gesammelt, sodass der Roboter stärker werden kann, wenn er auf eine schwierige Situation stößt, und lernen kann, sich schnell weiterzuentwickeln. Und agil

Bekanntgabe der ACL 2024 Awards: Eines der besten Papers zum Thema Oracle Deciphering von HuaTech, GloVe Time Test Award Bekanntgabe der ACL 2024 Awards: Eines der besten Papers zum Thema Oracle Deciphering von HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

Bei dieser ACL-Konferenz haben die Teilnehmer viel gewonnen. Die sechstägige ACL2024 findet in Bangkok, Thailand, statt. ACL ist die führende internationale Konferenz im Bereich Computerlinguistik und Verarbeitung natürlicher Sprache. Sie wird von der International Association for Computational Linguistics organisiert und findet jährlich statt. ACL steht seit jeher an erster Stelle, wenn es um akademischen Einfluss im Bereich NLP geht, und ist außerdem eine von der CCF-A empfohlene Konferenz. Die diesjährige ACL-Konferenz ist die 62. und hat mehr als 400 innovative Arbeiten im Bereich NLP eingereicht. Gestern Nachmittag gab die Konferenz den besten Vortrag und weitere Auszeichnungen bekannt. Diesmal gibt es 7 Best Paper Awards (zwei davon unveröffentlicht), 1 Best Theme Paper Award und 35 Outstanding Paper Awards. Die Konferenz verlieh außerdem drei Resource Paper Awards (ResourceAward) und einen Social Impact Award (

Das Team von Li Feifei schlug ReKep vor, um Robotern räumliche Intelligenz zu verleihen und GPT-4o zu integrieren Das Team von Li Feifei schlug ReKep vor, um Robotern räumliche Intelligenz zu verleihen und GPT-4o zu integrieren Sep 03, 2024 pm 05:18 PM

Tiefe Integration von Vision und Roboterlernen. Wenn zwei Roboterhände reibungslos zusammenarbeiten, um Kleidung zu falten, Tee einzuschenken und Schuhe zu packen, gepaart mit dem humanoiden 1X-Roboter NEO, der in letzter Zeit für Schlagzeilen gesorgt hat, haben Sie vielleicht das Gefühl: Wir scheinen in das Zeitalter der Roboter einzutreten. Tatsächlich sind diese seidigen Bewegungen das Produkt fortschrittlicher Robotertechnologie + exquisitem Rahmendesign + multimodaler großer Modelle. Wir wissen, dass nützliche Roboter oft komplexe und exquisite Interaktionen mit der Umgebung erfordern und die Umgebung als Einschränkungen im räumlichen und zeitlichen Bereich dargestellt werden kann. Wenn Sie beispielsweise möchten, dass ein Roboter Tee einschenkt, muss der Roboter zunächst den Griff der Teekanne ergreifen und sie aufrecht halten, ohne den Tee zu verschütten, und ihn dann sanft bewegen, bis die Öffnung der Kanne mit der Öffnung der Tasse übereinstimmt , und neigen Sie dann die Teekanne in einem bestimmten Winkel. Das

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, der Vater des Reinforcement Learning, wird teilnehmen! Yan Shuicheng, Sergey Levine und DeepMind-Wissenschaftler werden Grundsatzreden halten Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, der Vater des Reinforcement Learning, wird teilnehmen! Yan Shuicheng, Sergey Levine und DeepMind-Wissenschaftler werden Grundsatzreden halten Aug 22, 2024 pm 08:02 PM

Einleitung zur Konferenz Mit der rasanten Entwicklung von Wissenschaft und Technologie ist künstliche Intelligenz zu einer wichtigen Kraft bei der Förderung des sozialen Fortschritts geworden. In dieser Zeit haben wir das Glück, die Innovation und Anwendung der verteilten künstlichen Intelligenz (DAI) mitzuerleben und daran teilzuhaben. Verteilte Künstliche Intelligenz ist ein wichtiger Zweig des Gebiets der Künstlichen Intelligenz, der in den letzten Jahren immer mehr Aufmerksamkeit erregt hat. Durch die Kombination des leistungsstarken Sprachverständnisses und der Generierungsfähigkeiten großer Modelle sind plötzlich Agenten aufgetaucht, die auf natürlichen Sprachinteraktionen, Wissensbegründung, Aufgabenplanung usw. basieren. AIAgent übernimmt das große Sprachmodell und ist zu einem heißen Thema im aktuellen KI-Kreis geworden. Au

Hongmeng Smart Travel S9 und die umfassende Einführungskonferenz für neue Produkte wurden gemeinsam mit einer Reihe neuer Blockbuster-Produkte veröffentlicht Hongmeng Smart Travel S9 und die umfassende Einführungskonferenz für neue Produkte wurden gemeinsam mit einer Reihe neuer Blockbuster-Produkte veröffentlicht Aug 08, 2024 am 07:02 AM

Heute Nachmittag begrüßte Hongmeng Zhixing offiziell neue Marken und neue Autos. Am 6. August veranstaltete Huawei die Hongmeng Smart Xingxing S9 und die Huawei-Konferenz zur Einführung neuer Produkte mit umfassendem Szenario und brachte die Panorama-Smart-Flaggschiff-Limousine Xiangjie S9, das neue M7Pro und Huawei novaFlip, MatePad Pro 12,2 Zoll, das neue MatePad Air und Huawei Bisheng mit Mit vielen neuen Smart-Produkten für alle Szenarien, darunter die Laserdrucker der X1-Serie, FreeBuds6i, WATCHFIT3 und der Smart Screen S5Pro, von Smart Travel über Smart Office bis hin zu Smart Wear baut Huawei weiterhin ein Smart-Ökosystem für alle Szenarien auf, um Verbrauchern ein Smart-Erlebnis zu bieten Internet von allem. Hongmeng Zhixing: Huawei arbeitet mit chinesischen Partnern aus der Automobilindustrie zusammen, um die Modernisierung der Smart-Car-Industrie voranzutreiben

See all articles