Heim Backend-Entwicklung Python-Tutorial So verarbeiten Sie Ihren Datensatz vor

So verarbeiten Sie Ihren Datensatz vor

Jul 30, 2024 pm 06:03 PM

How to preprocess your Dataset

Einführung

Der Titanic-Datensatz ist ein klassischer Datensatz, der in Datenwissenschafts- und maschinellen Lernprojekten verwendet wird. Es enthält Informationen über die Passagiere der Titanic, und das Ziel besteht häufig darin, vorherzusagen, welche Passagiere die Katastrophe überlebt haben. Vor der Erstellung eines Vorhersagemodells ist es wichtig, die Daten vorzuverarbeiten, um sicherzustellen, dass sie sauber und für die Analyse geeignet sind. Dieser Blogbeitrag führt Sie durch die wesentlichen Schritte der Vorverarbeitung des Titanic-Datensatzes mit Python.

Schritt 1: Laden der Daten

Der erste Schritt in jedem Datenanalyseprojekt ist das Laden des Datensatzes. Wir verwenden die Pandas-Bibliothek, um die CSV-Datei mit den Titanic-Daten zu lesen. Dieser Datensatz enthält Funktionen wie Name, Alter, Geschlecht, Ticket, Fahrpreis und ob der Passagier überlebt hat (Survived).

import pandas as pd
import numpy as np
Nach dem Login kopieren

Laden Sie den Titanic-Datensatz

titanic = pd.read_csv('titanic.csv')
titanic.head()

Nach dem Login kopieren

Verstehen Sie die Daten

Der Datensatz enthält die folgenden Variablen im Zusammenhang mit Passagieren auf der Titanic:

  • Überleben: Zeigt an, ob der Passagier überlebt hat.

    • 0 = Nein
    • 1 = Ja
  • Pclass: Ticketklasse des Passagiers.

    • 1 = 1. Klasse
    • 2 = 2. Klasse
    • 3 = 3. Klasse
  • Geschlecht: Geschlecht des Passagiers.

  • Alter: Alter des Passagiers in Jahren.

  • SibSp: Anzahl der Geschwister oder Ehepartner an Bord der Titanic.

  • Parch: Anzahl der Eltern oder Kinder an Bord der Titanic.

  • Ticket: Ticketnummer.

  • Tarif: Passagiertarif.

  • Kabine: Kabinennummer.

  • Eingeschifft: Einschiffungshafen.

    • C = Cherbourg
    • Q = Queenstown
    • S = Southampton

Schritt 2: Explorative Datenanalyse (EDA)

Bei der explorativen Datenanalyse (EDA) wird der Datensatz untersucht, um seine Struktur und die Beziehungen zwischen verschiedenen Variablen zu verstehen. Dieser Schritt hilft dabei, Muster, Trends oder Anomalien in den Daten zu erkennen.

Übersicht über den Datensatz

Wir beginnen damit, die ersten Zeilen des Datensatzes anzuzeigen und eine Zusammenfassung der Statistiken zu erhalten. Dies gibt uns eine Vorstellung von den Datentypen, dem Wertebereich und dem Vorhandensein fehlender Werte.

# Display the first few rows
print(titanic.head())

# Summary statistics
print(titanic.describe(include='all'))
Nach dem Login kopieren

Schritt 3: Datenbereinigung

Datenbereinigung ist der Prozess der Behandlung fehlender Werte, der Korrektur von Datentypen und der Beseitigung etwaiger Inkonsistenzen. Im Titanic-Datensatz fehlen Werte für Merkmale wie „Alter“, „Kabine“ und „Eingeschifft“.

Umgang mit fehlenden Werten

Um mit fehlenden Werten umzugehen, können wir sie mit entsprechenden Werten füllen oder Zeilen/Spalten mit fehlenden Daten löschen. Beispielsweise können wir fehlende Alterswerte mit dem Durchschnittsalter füllen und Zeilen mit fehlenden Einschiffungswerten löschen.

# Fill missing age values with the mode
titanic['Age'].fillna(titanic['Age'].mode(), inplace=True)

# Drop rows with missing 'Embarked' values
titanic.dropna(subset=['Embarked'], inplace=True)

# Check remaining missing values
print(titanic.isnull().sum())
Nach dem Login kopieren

Schritt 4: Feature Engineering

Beim Feature-Engineering geht es darum, bestehende zu transformieren, um die Modellleistung zu verbessern. Dieser Schritt kann die Kodierung kategorialer Variablen zur Skalierung numerischer Merkmale umfassen.

Kategoriale Variablen kodieren

Maschinelle Lernalgorithmen erfordern eine numerische Eingabe, daher müssen wir kategoriale Merkmale in numerische umwandeln. Wir können One-Hot-Codierung für Funktionen wie Sex und Embarked verwenden.

# Convert categorical features to numerical
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

#fit the required column to be transformed
le.fit(df['Sex'])
df['Sex'] = le.transform(df['Sex'])
Nach dem Login kopieren

Fazit

Die Vorverarbeitung ist ein entscheidender Schritt in jedem Data-Science-Projekt. In diesem Blogbeitrag haben wir die wesentlichen Schritte des Ladens von Daten, der Durchführung einer explorativen Datenanalyse, der Bereinigung der Daten und der Feature-Entwicklung behandelt. Diese Schritte tragen dazu bei, dass unsere Daten für die Analyse oder Modellbildung bereit sind. Der nächste Schritt besteht darin, diese vorverarbeiteten Daten zu verwenden, um Vorhersagemodelle zu erstellen und deren Leistung zu bewerten. Für weitere Einblicke werfen Sie einen Blick in mein Colab-Notizbuch

Durch das Befolgen dieser Schritte können Anfänger eine solide Grundlage in der Datenvorverarbeitung erwerben und so die Voraussetzungen für fortgeschrittenere Datenanalyse- und maschinelle Lernaufgaben schaffen. Viel Spaß beim Codieren!

Das obige ist der detaillierte Inhalt vonSo verarbeiten Sie Ihren Datensatz vor. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

<🎜>: Bubble Gum Simulator Infinity - So erhalten und verwenden Sie Royal Keys
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusionssystem, erklärt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Java-Tutorial
1666
14
PHP-Tutorial
1273
29
C#-Tutorial
1255
24
Python: Spiele, GUIs und mehr Python: Spiele, GUIs und mehr Apr 13, 2025 am 12:14 AM

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python vs. C: Lernkurven und Benutzerfreundlichkeit Python vs. C: Lernkurven und Benutzerfreundlichkeit Apr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Python und Zeit: Machen Sie das Beste aus Ihrer Studienzeit Apr 14, 2025 am 12:02 AM

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python vs. C: Erforschung von Leistung und Effizienz erforschen Python vs. C: Erforschung von Leistung und Effizienz erforschen Apr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Welches ist Teil der Python Standard Library: Listen oder Arrays? Welches ist Teil der Python Standard Library: Listen oder Arrays? Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

Python: Automatisierung, Skript- und Aufgabenverwaltung Python: Automatisierung, Skript- und Aufgabenverwaltung Apr 16, 2025 am 12:14 AM

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Python lernen: Ist 2 Stunden tägliches Studium ausreichend? Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python vs. C: Verständnis der wichtigsten Unterschiede Python vs. C: Verständnis der wichtigsten Unterschiede Apr 21, 2025 am 12:18 AM

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

See all articles