So verarbeiten Sie Ihren Datensatz vor
Jul 30, 2024 pm 06:03 PMEinführung
Der Titanic-Datensatz ist ein klassischer Datensatz, der in Datenwissenschafts- und maschinellen Lernprojekten verwendet wird. Es enthält Informationen über die Passagiere der Titanic, und das Ziel besteht häufig darin, vorherzusagen, welche Passagiere die Katastrophe überlebt haben. Vor der Erstellung eines Vorhersagemodells ist es wichtig, die Daten vorzuverarbeiten, um sicherzustellen, dass sie sauber und für die Analyse geeignet sind. Dieser Blogbeitrag führt Sie durch die wesentlichen Schritte der Vorverarbeitung des Titanic-Datensatzes mit Python.
Schritt 1: Laden der Daten
Der erste Schritt in jedem Datenanalyseprojekt ist das Laden des Datensatzes. Wir verwenden die Pandas-Bibliothek, um die CSV-Datei mit den Titanic-Daten zu lesen. Dieser Datensatz enthält Funktionen wie Name, Alter, Geschlecht, Ticket, Fahrpreis und ob der Passagier überlebt hat (Survived).
import pandas as pd import numpy as np
Laden Sie den Titanic-Datensatz
titanic = pd.read_csv('titanic.csv') titanic.head()
Verstehen Sie die Daten
Der Datensatz enthält die folgenden Variablen im Zusammenhang mit Passagieren auf der Titanic:
-
Überleben: Zeigt an, ob der Passagier überlebt hat.
- 0 = Nein
- 1 = Ja
-
Pclass: Ticketklasse des Passagiers.
- 1 = 1. Klasse
- 2 = 2. Klasse
- 3 = 3. Klasse
Geschlecht: Geschlecht des Passagiers.
Alter: Alter des Passagiers in Jahren.
SibSp: Anzahl der Geschwister oder Ehepartner an Bord der Titanic.
Parch: Anzahl der Eltern oder Kinder an Bord der Titanic.
Ticket: Ticketnummer.
Tarif: Passagiertarif.
Kabine: Kabinennummer.
-
Eingeschifft: Einschiffungshafen.
- C = Cherbourg
- Q = Queenstown
- S = Southampton
Schritt 2: Explorative Datenanalyse (EDA)
Bei der explorativen Datenanalyse (EDA) wird der Datensatz untersucht, um seine Struktur und die Beziehungen zwischen verschiedenen Variablen zu verstehen. Dieser Schritt hilft dabei, Muster, Trends oder Anomalien in den Daten zu erkennen.
Übersicht über den Datensatz
Wir beginnen damit, die ersten Zeilen des Datensatzes anzuzeigen und eine Zusammenfassung der Statistiken zu erhalten. Dies gibt uns eine Vorstellung von den Datentypen, dem Wertebereich und dem Vorhandensein fehlender Werte.
# Display the first few rows print(titanic.head()) # Summary statistics print(titanic.describe(include='all'))
Schritt 3: Datenbereinigung
Datenbereinigung ist der Prozess der Behandlung fehlender Werte, der Korrektur von Datentypen und der Beseitigung etwaiger Inkonsistenzen. Im Titanic-Datensatz fehlen Werte für Merkmale wie „Alter“, „Kabine“ und „Eingeschifft“.
Umgang mit fehlenden Werten
Um mit fehlenden Werten umzugehen, können wir sie mit entsprechenden Werten füllen oder Zeilen/Spalten mit fehlenden Daten löschen. Beispielsweise können wir fehlende Alterswerte mit dem Durchschnittsalter füllen und Zeilen mit fehlenden Einschiffungswerten löschen.
# Fill missing age values with the mode titanic['Age'].fillna(titanic['Age'].mode(), inplace=True) # Drop rows with missing 'Embarked' values titanic.dropna(subset=['Embarked'], inplace=True) # Check remaining missing values print(titanic.isnull().sum())
Schritt 4: Feature Engineering
Beim Feature-Engineering geht es darum, bestehende zu transformieren, um die Modellleistung zu verbessern. Dieser Schritt kann die Kodierung kategorialer Variablen zur Skalierung numerischer Merkmale umfassen.
Kategoriale Variablen kodieren
Maschinelle Lernalgorithmen erfordern eine numerische Eingabe, daher müssen wir kategoriale Merkmale in numerische umwandeln. Wir können One-Hot-Codierung für Funktionen wie Sex und Embarked verwenden.
# Convert categorical features to numerical from sklearn import preprocessing le = preprocessing.LabelEncoder() #fit the required column to be transformed le.fit(df['Sex']) df['Sex'] = le.transform(df['Sex'])
Fazit
Die Vorverarbeitung ist ein entscheidender Schritt in jedem Data-Science-Projekt. In diesem Blogbeitrag haben wir die wesentlichen Schritte des Ladens von Daten, der Durchführung einer explorativen Datenanalyse, der Bereinigung der Daten und der Feature-Entwicklung behandelt. Diese Schritte tragen dazu bei, dass unsere Daten für die Analyse oder Modellbildung bereit sind. Der nächste Schritt besteht darin, diese vorverarbeiteten Daten zu verwenden, um Vorhersagemodelle zu erstellen und deren Leistung zu bewerten. Für weitere Einblicke werfen Sie einen Blick in mein Colab-Notizbuch
Durch das Befolgen dieser Schritte können Anfänger eine solide Grundlage in der Datenvorverarbeitung erwerben und so die Voraussetzungen für fortgeschrittenere Datenanalyse- und maschinelle Lernaufgaben schaffen. Viel Spaß beim Codieren!
Das obige ist der detaillierte Inhalt vonSo verarbeiten Sie Ihren Datensatz vor. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heißer Artikel

Hot-Tools-Tags

Heißer Artikel

Heiße Artikel -Tags

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?

So herunterladen Sie Dateien in Python

So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu finden

Wie man mit PDF -Dokumenten mit Python arbeitet

Wie kann man mit Redis in Django -Anwendungen zwischenstrichen

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?

Einführung des natürlichen Sprach -Toolkits (NLTK)
